2,061 research outputs found

    Chandra Discovery of 10 New X-Ray Jets Associated With FR II Radio Core-Selected AGNs in the MOJAVE Sample

    Get PDF
    The Chandra X-ray observatory has proven to be a vital tool for studying high-energy emission processes in jets associated with Active Galactic Nuclei (AGN).We have compiled a sample of 27 AGN selected from the radio flux-limited MOJAVE (Monitoring of Jets in AGN with VLBA Experiments) sample of highly relativistically beamed jets to look for correlations between X-ray and radio emission on kiloparsec scales. The sample consists of all MOJAVE quasars which have over 100 mJy of extended radio emission at 1.4 GHz and a radio structure of at least 3" in size. Previous Chandra observations have revealed X-ray jets in 11 of 14 members of the sample, and we have carried out new observations of the remaining 13 sources. Of the latter, 10 have Xray jets, bringing the overall detection rate to ~ 78%. Our selection criteria, which is based on highly compact, relativistically beamed jet emission and large extended radio flux, thus provides an effective method of discovering new X-ray jets associated with AGN. The detected X-ray jet morphologies are generally well correlated with the radio emission, except for those displaying sharp bends in the radio band. The X-ray emission mechanism for these powerful FR II (Fanaroff-Riley type II) jets can be interpreted as inverse Compton scattering off of cosmic microwave background (IC/CMB) photons by the electrons in the relativistic jets. We derive viewing angles for the jets, assuming a non-bending, non-decelerating model, by using superluminal parsec scale speeds along with parameters derived from the inverse Compton X-ray model. We use these angles to calculate best fit Doppler and bulk Lorentz factors for the jets, as well as their possible ranges, which leads to extreme values for the bulk Lorentz factor in some cases. When both the non-bending and non-decelerating assumptions are relaxed [abridged]Comment: 38 Pages, 4 Figures, 5 Tables, accepted for publication in Ap

    AHTR Refueling Systems and Process Description

    Get PDF
    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel

    Fermi LAT AGN classification using supervised machine learning

    Full text link
    Classifying Active Galactic Nuclei (AGN) is a challenge, especially for BL Lac Objects (BLLs), which are identified by their weak emission line spectra. To address the problem of classification, we use data from the 4th Fermi Catalog, Data Release 3. Missing data hinders the use of machine learning to classify AGN. A previous paper found that Multiple Imputation by Chain Equations (MICE) imputation is useful for estimating missing values. Since many AGN have missing redshift and the highest energy, we use data imputation with MICE and K-nearest neighbor (kNN) algorithm to fill in these missing variables. Then, we classify AGN into the BLLs or the Flat Spectrum Radio Quasars (FSRQs) using the SuperLearner, an ensemble method that includes several classification algorithms like logistic regression, support vector classifiers, Random Forests, Ranger Random Forests, multivariate adaptive regression spline (MARS), Bayesian regression, Extreme Gradient Boosting. We find that a SuperLearner model using MARS regression and Random Forests algorithms is 91.1% accurate for kNN imputed data and 91.2% for MICE imputed data. Furthermore, the kNN-imputed SuperLearner model predicts that 892 of the 1519 unclassified blazars are BLLs and 627 are Flat Spectrum Radio Quasars (FSRQs), while the MICE-imputed SuperLearner model predicts 890 BLLs and 629 FSRQs in the unclassified set. Thus, we can conclude that both imputation methods work efficiently and with high accuracy and that our methodology ushers the way for using SuperLearner as a novel classification method in the AGN community and, in general, in the astrophysics community.Comment: 15 pages, 8 figures, to be published in Monthly Notices of the Royal Astronomical Societ

    Characterization of the humoral immune response to the EBV proteome in extranodal NK/T-cell lymphoma

    Get PDF
    Extranodal natural killer/T-cell lymphoma (NKTCL) is an aggressive malignancy that has been etiologically linked to Epstein-Barr virus (EBV) infection, with EBV gene transcripts identified in almost all cases. However, the humoral immune response to EBV in NKTCL patients has not been well characterized. We examined the antibody response to EBV in plasma samples from 51 NKTCL cases and 154 controls from Hong Kong and Taiwan who were part of the multi-center, hospital-based AsiaLymph case-control study. The EBV-directed serological response was characterized using a protein microarray that measured IgG and IgA antibodies against 202 protein sequences representing the entire EBV proteome. We analyzed 157 IgG antibodies and 127 IgA antibodies that fulfilled quality control requirements. Associations between EBV serology and NKTCL status were disproportionately observed for IgG rather than IgA antibodies. Nine anti-EBV IgG responses were significantly elevated in NKTCL cases compared with controls and had ORshighest vs. lowest tertile > 6.0 (Bonferroni-corrected P-values < 0.05). Among these nine elevated IgG responses in NKTCL patients, three IgG antibodies (all targeting EBNA3A) are novel and have not been observed for other EBV-associated tumors of B-cell or epithelial origin. IgG antibodies against EBNA1, which have consistently been elevated in other EBV-associated tumors, were not elevated in NKTCL cases. We characterize the antibody response against EBV for patients with NKTCL and identify IgG antibody responses against six distinct EBV proteins. Our findings suggest distinct serologic patterns of this NK/T-cell lymphoma compared with other EBV-associated tumors of B-cell or epithelial origin

    Can modeling of HIV treatment processes improve outcomes? Capitalizing on an operations research approach to the global pandemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical modeling has been applied to a range of policy-level decisions on resource allocation for HIV care and treatment. We describe the application of classic operations research (OR) techniques to address logistical and resource management challenges in HIV treatment scale-up activities in resource-limited countries.</p> <p>Methods</p> <p>We review and categorize several of the major logistical and operational problems encountered over the last decade in the global scale-up of HIV care and antiretroviral treatment for people with AIDS. While there are unique features of HIV care and treatment that pose significant challenges to effective modeling and service improvement, we identify several analogous OR-based solutions that have been developed in the service, industrial, and health sectors.</p> <p>Results</p> <p>HIV treatment scale-up includes many processes that are amenable to mathematical and simulation modeling, including forecasting future demand for services; locating and sizing facilities for maximal efficiency; and determining optimal staffing levels at clinical centers. Optimization of clinical and logistical processes through modeling may improve outcomes, but successful OR-based interventions will require contextualization of response strategies, including appreciation of both existing health care systems and limitations in local health workforces.</p> <p>Conclusion</p> <p>The modeling techniques developed in the engineering field of operations research have wide potential application to the variety of logistical problems encountered in HIV treatment scale-up in resource-limited settings. Increasing the number of cross-disciplinary collaborations between engineering and public health will help speed the appropriate development and application of these tools.</p

    The global burden of falls: Global, regional and national estimates of morbidity and mortality from the Global Burden of Disease Study 2017

    Get PDF
    Background: Falls can lead to severe health loss including death. Past research has shown that falls are an important cause of death and disability worldwide. The Global Burden of Disease Study 2017 (GBD 2017) provides a comprehensive assessment of morbidity and mortality from falls. Methods: Estimates for mortality, years of life lost (YLLs), incidence, prevalence, years lived with disability (YLDs) and disability-adjusted life years (DALYs) were produced for 195 countries and territories from 1990 to 2017 for all ages using the GBD 2017 framework. Distributions of the bodily injury (eg, hip fracture) were estimated using hospital records. Results: Globally, the age-standardised incidence of falls was 2238 (1990-2532) per 100 000 in 2017, representing a decline of 3.7% (7.4 to 0.3) from 1990 to 2017. Age-standardised prevalence w

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Reducing the Activity and Secretion of Microbial Antioxidants Enhances the Immunogenicity of BCG

    Get PDF
    BACKGROUND:In early clinical studies, the live tuberculosis vaccine Mycobacterium bovis BCG exhibited 80% protective efficacy against pulmonary tuberculosis (TB). Although BCG still exhibits reliable protection against TB meningitis and miliary TB in early childhood it has become less reliable in protecting against pulmonary TB. During decades of in vitro cultivation BCG not only lost some genes due to deletions of regions of the chromosome but also underwent gene duplication and other mutations resulting in increased antioxidant production. METHODOLOGY/PRINCIPAL FINDINGS:To determine whether microbial antioxidants influence vaccine immunogenicity, we eliminated duplicated alleles encoding the oxidative stress sigma factor SigH in BCG Tice and reduced the activity and secretion of iron co-factored superoxide dismutase. We then used assays of gene expression and flow cytometry with intracellular cytokine staining to compare BCG-specific immune responses in mice after vaccination with BCG Tice or the modified BCG vaccine. Compared to BCG, the modified vaccine induced greater IL-12p40, RANTES, and IL-21 mRNA in the spleens of mice at three days post-immunization, more cytokine-producing CD8+ lymphocytes at the peak of the primary immune response, and more IL-2-producing CD4+ lymphocytes during the memory phase. The modified vaccine also induced stronger secondary CD4+ lymphocyte responses and greater clearance of challenge bacilli. CONCLUSIONS/SIGNIFICANCE:We conclude that antioxidants produced by BCG suppress host immune responses. These findings challenge the hypothesis that the failure of extensively cultivated BCG vaccines to prevent pulmonary tuberculosis is due to over-attenuation and suggest instead a new model in which BCG evolved to produce more immunity-suppressing antioxidants. By targeting these antioxidants it may be possible to restore BCG's ability to protect against pulmonary TB

    Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Get PDF
    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations
    corecore