1,134 research outputs found
TA Systems: The Key to New Antibacterial Strategies?
This slide presentation for the Natural Sciences Poster Session at Parkland College summarizes a study investigating the use of toxin-antitoxin systems as a treatment for antibiotic resistant e-coli
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory
There are several applications in computational biophysics which require the
optimization of discrete interacting states; e.g., amino acid titration states,
ligand oxidation states, or discrete rotamer angles. Such optimization can be
very time-consuming as it scales exponentially in the number of sites to be
optimized. In this paper, we describe a new polynomial-time algorithm for
optimization of discrete states in macromolecular systems. This algorithm was
adapted from image processing and uses techniques from discrete mathematics and
graph theory to restate the optimization problem in terms of "maximum
flow-minimum cut" graph analysis. The interaction energy graph, a graph in
which vertices (amino acids) and edges (interactions) are weighted with their
respective energies, is transformed into a flow network in which the value of
the minimum cut in the network equals the minimum free energy of the protein,
and the cut itself encodes the state that achieves the minimum free energy.
Because of its deterministic nature and polynomial-time performance, this
algorithm has the potential to allow for the ionization state of larger
proteins to be discovered
Atomic radius and charge parameter uncertainty in biomolecular solvation energy calculations
Atomic radii and charges are two major parameters used in implicit solvent
electrostatics and energy calculations. The optimization problem for charges
and radii is under-determined, leading to uncertainty in the values of these
parameters and in the results of solvation energy calculations using these
parameters. This paper presents a new method for quantifying this uncertainty
in implicit solvation calculations of small molecules using surrogate models
based on generalized polynomial chaos (gPC) expansions. There are relatively
few atom types used to specify radii parameters in implicit solvation
calculations; therefore, surrogate models for these low-dimensional spaces
could be constructed using least-squares fitting. However, there are many more
types of atomic charges; therefore, construction of surrogate models for the
charge parameter space requires compressed sensing combined with an iterative
rotation method to enhance problem sparsity. We demonstrate the application of
the method by presenting results for the uncertainties in small molecule
solvation energies based on these approaches. The method presented in this
paper is a promising approach for efficiently quantifying uncertainty in a wide
range of force field parameterization problems, including those beyond
continuum solvation calculations.The intent of this study is to provide a way
for developers of implicit solvent model parameter sets to understand the
sensitivity of their target properties (solvation energy) on underlying choices
for solute radius and charge parameters
- …