9 research outputs found

    Side-to-side magnet anastomosis system duodeno-ileostomy with sleeve gastrectomy: early multi-center results

    No full text
    Introduction: Gastrointestinal anastomoses with classical sutures and/or metal staples have resulted in significant bleeding and leak rates. This multi-site study evaluated the feasibility, safety, and preliminary effectiveness of a novel linear magnetic compression anastomosis device, the Magnet System (MS), to form a side-to-side duodeno-ileostomy (DI) diversion for weight loss and type 2 diabetes (T2D) resolution. Methods: In patients with class II and III obesity (body mass index [BMI, kg/m2] ≥ 35.0– ≤ 50.0 with/without T2D [HbA1C > 6.5%]), two linear MS magnets were delivered endoscopically to the duodenum and ileum with laparoscopic assistance and aligned, initiating DI; sleeve gastrectomy (SG) was added. There were no bowel incisions or retained sutures/staples. Fused magnets were expelled naturally. Adverse events (AEs) were graded by Clavien-Dindo Classification (CDC). Results: Between November 22, 2021 and July 18, 2022, 24 patients (83.3% female, mean ± SEM weight 121.9 ± 3.3 kg, BMI 44.4 ± 0.8) in three centers underwent magnetic DI. Magnets were expelled at a median 48.5 days. Respective mean BMI, total weight loss, and excess weight loss at 6 months (n = 24): 32.0 ± 0.8, 28.1 ± 1.0%, and 66.2 ± 3.4%; at 12 months (n = 5), 29.3 ± 1.5, 34.0 ± 1.4%, and 80.2 ± 6.6%. Group mean respective mean HbA1C and glucose levels dropped to 1.1 ± 0.4% and 24.8 ± 6.6 mg/dL (6 months); 2.0 ± 1.1% and 53.8 ± 6.3 mg/dL (12 months). There were 0 device-related AEs, 3 procedure-related serious AEs. No anastomotic bleeding, leakage, stricture, or mortality. Conclusion: In a multi-center study, side-to-side Magnet System duodeno-ileostomy with SG in adults with class III obesity appeared feasible, safe, and effective for weight loss and T2D resolution in the short term.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Matepair sequencing for the detection of chromosomal aberrations in patients with intellectual disability and congenital malformations

    No full text
    Recently, microarrays have replaced karyotyping as a first tier test in patients with idiopathic intellectual disability and/or multiple congenital abnormalities (ID/MCA) in many laboratories. Although in about 14–18% of such patients, DNA copy-number variants (CNVs) with clinical significance can be detected, microarrays have the disadvantage of missing balanced rearrangements, as well as providing no information about the genomic architecture of structural variants (SVs) like duplications and complex rearrangements. Such information could possibly lead to a better interpretation of the clinical significance of the SV. In this study, the clinical use of mate pair next-generation sequencing was evaluated for the detection and further characterization of structural variants within the genomes of 50 ID/MCA patients. Thirty of these patients carried a chromosomal aberration that was previously detected by array CGH or karyotyping and suspected to be pathogenic. In the remaining 20 patients no causal SVs were found and only benign aberrations were detected by conventional techniques. Combined cluster and coverage analysis of the mate pair data allowed precise breakpoint detection and further refinement of previously identified balanced and (complex) unbalanced aberrations, pinpointing the causal gene for some patients. We conclude that mate pair sequencing is a powerful technology that can provide rapid and unequivocal characterization of unbalanced and balanced SVs in patient genomes and can be essential for the clinical interpretation of some SVs

    Mate pair sequencing for the detection of chromosomal aberrations in patients with intellectual disability and congenital malformations

    No full text
    Recently, microarrays have replaced karyotyping as a first tier test in patients with idiopathic intellectual disability and/or multiple congenital abnormalities (ID/MCA) in many laboratories. Although in about 14-18% of such patients, DNA copy-number variants (CNVs) with clinical significance can be detected, microarrays have the disadvantage of missing balanced rearrangements, as well as providing no information about the genomic architecture of structural variants (SVs) like duplications and complex rearrangements. Such information could possibly lead to a better interpretation of the clinical significance of the SV. In this study, the clinical use of mate pair next-generation sequencing was evaluated for the detection and further characterization of structural variants within the genomes of 50 ID/MCA patients. Thirty of these patients carried a chromosomal aberration that was previously detected by array CGH or karyotyping and suspected to be pathogenic. In the remaining 20 patients no causal SVs were found and only benign aberrations were detected by conventional techniques. Combined cluster and coverage analysis of the mate pair data allowed precise breakpoint detection and further refinement of previously identified balanced and (complex) unbalanced aberrations, pinpointing the causal gene for some patients. We conclude that mate pair sequencing is a powerful technology that can provide rapid and unequivocal characterization of unbalanced and balanced SVs in patient genomes and can be essential for the clinical interpretation of some SVs

    Mate pair sequencing for the detection of chromosomal aberrations in patients with intellectual disability and congenital malformations

    No full text
    Recently, microarrays have replaced karyotyping as a first tier test in patients with idiopathic intellectual disability and/or multiple congenital abnormalities (ID/MCA) in many laboratories. Although in about 14-18% of such patients, DNA copy-number variants (CNVs) with clinical significance can be detected, microarrays have the disadvantage of missing balanced rearrangements, as well as providing no information about the genomic architecture of structural variants (SVs) like duplications and complex rearrangements. Such information could possibly lead to a better interpretation of the clinical significance of the SV. In this study, the clinical use of mate pair next-generation sequencing was evaluated for the detection and further characterization of structural variants within the genomes of 50 ID/MCA patients. Thirty of these patients carried a chromosomal aberration that was previously detected by array CGH or karyotyping and suspected to be pathogenic. In the remaining 20 patients no causal SVs were found and only benign aberrations were detected by conventional techniques. Combined cluster and coverage analysis of the mate pair data allowed precise breakpoint detection and further refinement of previously identified balanced and (complex) unbalanced aberrations, pinpointing the causal gene for some patients. We conclude that mate pair sequencing is a powerful technology that can provide rapid and unequivocal characterization of unbalanced and balanced SVs in patient genomes and can be essential for the clinical interpretation of some SVs

    The African coelacanth genome provides insights into tetrapod evolution.

    Get PDF
    The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution

    Ventilatory settings in the initial 72 h and their association with outcome in out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial

    No full text
    International audienc
    corecore