209 research outputs found

    Stelladens mysteriosus: A Strange New Mosasaurid (Squamata) from the Maastrichtian (Late Cretaceous) of Morocco

    Get PDF
    Mosasaurids, a clade of specialized marine squamates, saw a major adaptive radiation in the Late Cretaceous, evolving a wide range of body sizes, shapes, and specialized tooth morphologies. The most diverse known mosasaurid faunas come from the late Maastrichtian phosphates of Morocco. Here, we report an unusual new mosasaurid, Stelladens mysteriosus, based on a partial jaw and associated tooth crowns from lower Couche III phosphatic deposits at Sidi Chennane, Oulad Abdoun Basin, Morocco. Stelladens is characterized by short, triangular tooth crowns with a series of strong, elaborate, and serrated ridges on the lingual surface of the tooth, functioning as accessory carinae. Morphology of the teeth and associated jaw fragment suggest affinities with Mosasaurinae. No close analogues to the unique tooth morphology of Stelladens are known, either extant or extinct. It may have had an unusual and highly specialized diet, a specialized prey-capture strategy, or both. The diversity of mosasaurid teeth is much higher than that of plesiosaurs, ichthyosaurs, or extant marine mammals, and likely reflects both the ecological diversity of mosasaurids and complex developmental mechanisms responsible for tooth formation in mosasaurines. Mosasaurid diversity continued to increase up to the Cretaceous–Paleogene boundary.Research of XPS is financed by the Spanish Ministry of Science and Innovation (MCIN) and the European Regional Development Fund (FEDER) (research project PID2021-122612OB-I00), and by the Basque Country Gouvernment (research group IT1485-22). This study is carried out within the framework of the agreement between the universities of Bath and Cadi Ayyad

    Xenodens calminechari gen. et sp. nov., a bizarre mosasaurid (Mosasauridae, Squamata) with shark-like cutting teeth from the upper Maastrichtian of Morocco, North Africa

    Get PDF
    The mosasaurids (Mosasauridae) were a group of lizards that became highly specialized for marine life in the mid-Cretaceous. By the end of the Cretaceous, they had undergone an adaptive radiation, and showed a wide range of body sizes, locomotor styles, and diets. Their ranks included piscivores, apex predators, and durophages. Here, we report a new taxon, Xenodens calminechari gen. et sp. nov., from the upper Maastrichtian phosphates of Morocco, with dental specializations unlike those of any known reptile. Teeth form a unique dental battery in which short, laterally compressed and hooked teeth formed a saw-like blade. Unique features of tooth structure and implantation suggest affinities with the durophagous Carinodens. The tooth arrangement seen in Xenodens not only expands known disparity of mosasaurids, but is unique among Squamata, or even Tetrapoda. The specialized dentition implies a previously unknown feeding strategy, likely involving a cutting motion used to carve pieces out of large prey, or in scavenging. This novel dental specialization adds to the already considerable disparity and functional diversity of the late Maastrichtian mosasaurids and marine reptiles. This provides further evidence for a diverse marine fauna just prior to the K-Pg extinction

    Mary Anning’s legacy to French vertebrate palaeontology

    Full text link
    peer reviewedThe real nature of marine reptile fossils found in England in between the 1700s to the beginning of the 1900s remained enigmatic, until Mary Anning's incredible fossil discoveries and their subsequent study by eminent English and French scientists. In 1820, Georges Cuvier acquired several ichthyosaur specimens found by Mary Anning, now kept or displayed in the Palaeontology Gallery of the MNHN in Paris. Four years later, Cuvier obtained a plesiosaur specimen from Mary Anning, only the second ever discovered. Cuvier was fascinated by these fossils and their study allowed him to apply his comparative anatomical method and to support his catastrophist theory. We re-examined these important specimens from an historical point of view and herein describe them taxonomically for the first time since Cuvier’s works. The Paris specimens belong to two different ichthyosaur genera (Ichthyosaurus and Leptonectes) and one plesiosaur genus (Plesiosaurus)

    Pluridens serpentis, a new mosasaurid (Mosasauridae: Halisaurinae) from the Maastrichtian of Morocco and implications for mosasaur diversity

    Get PDF
    Mosasaurids (Mosasauridae) were specialized marine lizards that evolved and radiated in the Late Cretaceous. Their diversity peaked in the Maastrichtian, with the most diverse faunas known from Morocco. Here we describe a new species of mosasaurid from this fauna. Pluridens serpentis sp. nov. is described based on two complete skulls and referred jaws. It is referred to Pluridens based on the elongate and robust jaws, small teeth, and specialized tooth implantation. Pluridens is referred to Halisaurinae based on the posteriorly expanded premaxilla, long premaxilla-maxilla suture, broad premaxillary facet on the maxilla, closed otic notch, and small, striated, hooked teeth. The orbits are reduced relative to other halisaurines while the snout is robust and flat with a broad, rounded tip. The jaws bear numerous small, hooked, snake-like teeth. Skulls imply lengths of 5–6 m; referred material suggests lengths of ≥9 m. Pluridens’ specialized morphology – especially the contrasting large size and small teeth - suggests a distinct feeding strategy. Small orbits imply that P. serpentis relied on nonvisual cues including touch and chemoreception during foraging, as in modern marine snakes. Numerous neurovascular foramina on the premaxillae are consistent with this idea. The small teeth suggest proportionately small prey. The dentary becomes massive and robust in the largest individuals, suggesting sexual selection and perhaps sexual dimorphism, with the mandibles possibly functioning for combat as in modern beaked whales and lizards. The new mosasaur emphasizes how Maastrichtian mosasaurids were characterized by high species richness, high functional diversity, and high endemism, i.e. geographic specialization. It appears mosasaurids continued diversifying until the end of the Cretaceous, just prior to the K-Pg extinction

    Pluridens serpentis, a new mosasaurid (Mosasauridae: Halisaurinae) from the Maastrichtian of Morocco and implications for mosasaur diversity

    Get PDF
    Mosasaurids (Mosasauridae) were specialized marine lizards that evolved and radiated in the Late Cretaceous. Their diversity peaked in the Maastrichtian, with the most diverse faunas known from Morocco. Here we describe a new species of mosasaurid from this fauna. Pluridens serpentis sp. nov. is described based on two complete skulls and referred jaws. It is referred to Pluridens based on the elongate and robust jaws, small teeth, and specialized tooth implantation. Pluridens is referred to Halisaurinae based on the posteriorly expanded premaxilla, long premaxilla-maxilla suture, broad premaxillary facet on the maxilla, closed otic notch, and small, striated, hooked teeth. The orbits are reduced relative to other halisaurines while the snout is robust and flat with a broad, rounded tip. The jaws bear numerous small, hooked, snake-like teeth. Skulls imply lengths of 5–6 m; referred material suggests lengths of ≥9 m. Pluridens’ specialized morphology – especially the contrasting large size and small teeth - suggests a distinct feeding strategy. Small orbits imply that P. serpentis relied on nonvisual cues including touch and chemoreception during foraging, as in modern marine snakes. Numerous neurovascular foramina on the premaxillae are consistent with this idea. The small teeth suggest proportionately small prey. The dentary becomes massive and robust in the largest individuals, suggesting sexual selection and perhaps sexual dimorphism, with the mandibles possibly functioning for combat as in modern beaked whales and lizards. The new mosasaur emphasizes how Maastrichtian mosasaurids were characterized by high species richness, high functional diversity, and high endemism, i.e. geographic specialization. It appears mosasaurids continued diversifying until the end of the Cretaceous, just prior to the K-Pg extinction

    The biota of the Upper Cretaceous site of Lo Hueco (Cuenca, Spain)

    Get PDF
    The Late Cretaceous (Campanian-Maastrichtian) fossil site of Lo Hueco was recently discovered close to the village of Fuentes (Cuenca, Spain) during the cutting of a little hill for installation of the railway of the Madrid-Levante high-speed train. To date, it has yielded a rich collection of well-preserved Cretaceous macrofossils, including plants, invertebrates, and vertebrates. The recovered fossil assemblage is mainly composed of plants, molluscs (bivalves and gastropods), actinopterygians and teleosteans fishes, amphibians, panpleurodiran (bothremydids) and pancryptodiran turtles, squamate lizards, eusuchian crocodyliforms, rhabdodontid ornithopods, theropods (mainly dromaeosaurids), and titanosaur sauropods. This assemblage was deposited in a near-coast continental muddy floodplain crossed by distri-butary sandy channels, exposed intermittently to brackish or marine and freshwater flooding as well as to partial or total desiccation events

    Marine tetrapod feeding guilds using automated high-density 3D geometric morphometrics

    Full text link
    Defining feeding guilds based on tooth morphology is an entire subfield in marine tetrapod science. However, these assessments have mostly been qualitative, relying on gross tooth shape, rarely preserved gut content, and killing behaviour. Moreover, some of the data at the foundation of these guilds have proven to be debatable and there is an ever clearer need for a testable, quantitative framework to assess feeding guilds. We develop a novel protocol that incorporates the pseudo-landmarking technique into high-density geometric morphometrics procedures, sampling 3D surface models of tooth crowns automatically and densely (e.g. 2000 surface landmarks) after placing just 5 fixed landmarks on each tooth. A crushing-to-piercing transition is evident along the first axis of the PCA-based morphospace, while the presence and shape of carinae, as well as crown curvature, is captured by the second axis. This allows an efficient visualisation of tooth shapes with just two axes. Peculiar structures such as strong crown curvature or carinae are mostly recorded on medium-sized teeth, suggesting that a scaling factor is at play. We attempt a new definition of marine reptile feeding guilds based on tooth morphology and size, using extant polarizers.SEASCAP

    A juvenile plesiosaur from the Pliensbachian (Lower Jurassic) of Asturias, Spain

    Get PDF
    Mesozoic marine reptiles are poorly known in Spain (see Quesada et al., 1998 for a bibliography). Up to now, the plesiosaur record of Spain consisted only of fragmentary remains coming from the Jurassic of Asturias (Schulz, 1858; Ruiz-Omeñaca et al., 2006) and the Cretaceous of the Basque Country and Castellón (Bardet et al., 1999a; Yagüe et al., 2003). The Asturias record includes (1) an historical nineteenth century specimen (now lost)—one of the oldest fossil reptiles from Spain—briefly mentioned as “part of a skeleton and paddles of a plesiosaur, which largest vertebrae reach a diameter of 6 cm, found in Lower Jurassic rocks (most probably Rodiles Formation, Pliensbachian, J. C. G.-R. pers. obs.), between the localities of El Puntal and Tazones in Villaviciosa” (Schulz, 1858:108). Unfortunately, no figure was provided and we have no definitive certitude about the plesiosaurian affinities of this specimen. (2) isolated remains from the Lower Jurassic (HettangianSinemurian; Gijón Formation) and Upper Jurassic (Kimmeridgian; Tereñes Formation) of the same area (Ruiz-Omeñaca et al., 2006). Here we report on the discovery of an immature plesiosaur from the Pliensbachian of Asturias. It is the most complete plesiosaur specimen found in Spain, one of the very few juvenile plesiosaurs known worldwide, and an additional specimen from the very poor Pliensbachian fossil record.Fil: Bardet, Nathalie. Museum National D'histoire Naturelle. Centre National de la Recherche Scientifique; FranciaFil: Fernández, Marta Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; ArgentinaFil: García Ramos, José Carlos. Universidad de Oviedo; EspañaFil: Pereda Suberbiola, Xabier. Universidad del País Vasco; EspañaFil: Piñuela, Laura. Universidad de Oviedo; EspañaFil: Ruiz Omeñaca, José Ignacio. Universidad de Oviedo; EspañaFil: Vincent, Peggy. Museum National D'histoire Naturelle. Centre National de la Recherche Scientifique; Franci

    A new lower Turonian mosasaurid from the Western Interior Seaway and the antiquity of the unique basicranial circulation pattern in Plioplatecarpinae

    Get PDF
    We describe and name a new mosasaur taxon, Sarabosaurus dahli gen. et sp. nov., from the lower Turonian part of the Tropic Shale in Utah, USA. The holotype specimen preserves significant portions of the skull and axial postcranial skeleton. It was found in the upper part of the Watinoceras devonense Ammonite Zone, bounded by radioisotopic dates above and below, and is thus about 93.7 Ma, the oldest mosasaurid taxon known from the Western Interior Seaway. The new taxon possesses a vascular pattern of the basisphenoid heretofore only seen in late diverging plioplatecarpine mosasaurids. Reevaluation of the morphology of the basisphenoid of previously described Turonian mosasaurs using μCT techniques reveals the derived condition is also present in Yaguasaurus and the incipient condition in Tethysaurus and Russellosaurus. In these two taxa, the canals enter the basisphenoid, but do not pass into the basioccipital. Instead, they exit only high on the posterior wall of the sella turcica, in a position similar to the basilar artery of other lizards. This vascular pattern, both in its incipient and derived states, is unique among squamates and supports inclusion of the aforementioned taxa in a monophyletic Plioplatecarpinae, for which we provide an emended diagnosis. Phylogenetic analysis recovers Sarabosaurus dahli gen. et sp. nov. as the sister taxon to Yaguarasaurus and all other later diverging plioplatecarpines, with Russellosaurus and Tethysaurus as successive sister taxa. Tylosaurine mosasaurids retain the primitive condition of the basisphenoid vascularization pattern and implies a tylosaurine-plioplatecarpine divergence in the late Cenomanian or earliest Turonian
    corecore