13 research outputs found
Phonon instability in two-dimensional dipolar Bose-Einstein Condensates
The partially attractive character of the dipole-dipole interaction leads to
phonon instability in dipolar condensates, which is followed by collapse in
three-dimensional geometries. We show that the nature of this instability is
fundamentally different in two-dimensional condensates, due to the
dipole-induced stabilization of two-dimensional bright solitons. As a
consequence, a transient gas of attractive solitons is formed, and collapse may
be avoided. In the presence of an harmonic confinement, the instability leads
to transient pattern formation followed by the creation of stable
two-dimensional solitons. This dynamics should be observable in on-going
experiments, allowing for the creation of stable two-dimensional solitons for
the first time ever in quantum gases.Comment: 4 pages, 4 figure
Kelvon-roton instability of vortex lines in dipolar Bose-Einstein condensates
The physics of vortex lines in dipolar condensates is studied. Due to the
nonlocality of the dipolar interaction, the 3D character of the vortex plays a
more important role in dipolar gases than in typical short-range interacting
ones. In particular, the dipolar interaction significantly affects the
stability of the transverse modes of the vortex line. Remarkably, in the
presence of a periodic potential along the vortex line, a roton minimum may
develop in the spectrum of transverse modes. We discuss the appropriate
conditions at which this roton minimum may eventually lead to an instability of
the straight vortex line, opening new scenarios for vortices in dipolar gases.Comment: 4 pages, 3 eps figure
Stability of dark solitons in three dimensional dipolar Bose-Einstein condensates
The dynamical stability of dark solitons in dipolar Bose-Einstein condensates
is studied. For standard short-range interacting condensates dark solitons are
unstable against transverse excitations in two and three dimensions. On the
contrary, due to its non local character, the dipolar interaction allows for
stable 3D stationary dark solitons, opening a qualitatively novel scenario in
nonlinear atom optics. We discuss in detail the conditions to achieve this
stability, which demand the use of an additional optical lattice, and the
stability regimes.Comment: 4 pages, 3 eps figure
Phase transition from straight into twisted vortex-lines in dipolar Bose-Einstein condensates
The non-local non-linearity introduced by the dipole-dipole interaction plays
a crucial role in the physics of dipolar Bose-Einstein condensates. In
particular, it may distort significantly the stability of straight vortex lines
due to the rotonization of the Kelvin-wave spectrum. In this paper we analyze
this instability showing that it leads to a second-order-like phase transition
from a straight vortex-line into novel helical or snake-like configurations,
depending on the dipole orientation.Comment: 11 pages, 6 figures, Accepted for publication in New J. Phy
The physics of dipolar bosonic quantum gases
This article reviews the recent theoretical and experimental advances in the
study of ultracold gases made of bosonic particles interacting via the
long-range, anisotropic dipole-dipole interaction, in addition to the
short-range and isotropic contact interaction usually at work in ultracold
gases. The specific properties emerging from the dipolar interaction are
emphasized, from the mean-field regime valid for dilute Bose-Einstein
condensates, to the strongly correlated regimes reached for dipolar bosons in
optical lattices.Comment: Review article, 71 pages, 35 figures, 350 references. Submitted to
Reports on Progress in Physic
Cold and Ultracold Molecules: Science, Technology, and Applications
This article presents a review of the current state of the art in the
research field of cold and ultracold molecules. It serves as an introduction to
the Special Issue of the New Journal of Physics on Cold and Ultracold Molecules
and describes new prospects for fundamental research and technological
development. Cold and ultracold molecules may revolutionize physical chemistry
and few body physics, provide techniques for probing new states of quantum
matter, allow for precision measurements of both fundamental and applied
interest, and enable quantum simulations of condensed-matter phenomena.
Ultracold molecules offer promising applications such as new platforms for
quantum computing, precise control of molecular dynamics, nanolithography, and
Bose-enhanced chemistry. The discussion is based on recent experimental and
theoretical work and concludes with a summary of anticipated future directions
and open questions in this rapidly expanding research field.Comment: 82 pages, 9 figures, review article to appear in New Journal of
Physics Special Issue on Cold and Ultracold Molecule
Soliton-soliton scattering in dipolar Bose-Einstein condensates
4 pages, 5 eps figures, minor changesInternational audienceWe analyze the scattering of bright solitons in dipolar Bose-Einstein condensates placed in unconnected layers. Whereas for short-range interactions unconnected layers are independent, a remarkable consequence of the dipole interaction is the appearance of novel nonlocal interlayer effects. In particular, we show that the interlayer interaction leads to an effective molecular potential between disconnected solitons, inducing a complex scattering physics between them, which includes inelastic fusion into soliton-molecules, and strong symmetric and asymmetric inelastic resonances. In addition, a fundamentally new 2D scattering scenario in matter-wave solitons is possible, in which inelastic spiraling occurs, resembling phenomena in photorrefractive materials. Finally, we consider the scattering of unconnected 1D solitons and discuss the feasibility in current on going experiments