9 research outputs found

    The additional value of TGFβ1 and IL-7 to predict the course of prostate cancer progression

    Get PDF
    Background: Given the fact that prostate cancer incidence will increase in the coming years, new prognostic biomarkers are needed with regard to the biological aggressiveness of the prostate cancer diagnosed. Since cytokines have been associated with the biology of cancer and its prognosis, we determined whether transforming growth factor beta 1 (TGFβ1), interleukin-7 (IL-7) receptor and IL-7 levels add additional prognostic information with regard to prostate cancer

    Modulation of Androgen Receptor Signaling in Hormonal Therapy-Resistant Prostate Cancer Cell Lines

    Get PDF
    Background: Prostate epithelial cells depend on androgens for survival and function. In (early) prostate cancer (PCa) androgens also regulate tumor growth, which is exploited by hormonal therapies in metastatic disease. The aim of the present study was to characterize the androgen receptor (AR) response in hormonal therapy-resistant PC346 cells and identify potential disease markers. Methodology/Principal Findings: Human 19K oligoarrays were used to establish the androgen-regulated expression profile of androgen-responsive PC346C cells and its derivative therapy-resistant sublines: PC346DCC (vestigial AR levels), PC346Flu1 (AR overexpression) and PC346Flu2 (T877A AR mutation). In total, 107 transcripts were differentially-expressed in PC346C and derivatives after R1881 or hydroxyflutamide stimulations. The AR-regulated expression profiles reflected the AR modifications of respective therapy-resistant sublines: AR overexpression resulted in stronger and broader transcriptional response to R1881 stimulation, AR down-regulation correlated with deficient response of AR-target genes and the T877A mutation resulted in transcriptional response to both R1881 and hydroxyflutamide. This AR-target signature was linked to multiple publicly available cell line and tumor derived PCa databases, revealing that distinct functional clusters were differentially modulated during PCa progression. Differentiation and secretory functions were up-regulated in primary PCa but repressed i

    Bypass Mechanisms of the Androgen Receptor Pathway in Therapy-Resistant Prostate Cancer Cell Models

    Get PDF
    Background: Prostate cancer is initially dependent on androgens for survival and growth, making hormonal therapy the cornerstone treatment for late-stage tumors. However, despite initial remission, the cancer will inevitably recur. The present study was designed to investigate how androgen-dependent prostate cancer cells eventually survive and resume growth under androgen-deprived and antiandrogen supplemented conditions. As model system, we used the androgen-responsive PC346C cell line and its therapy-resistant sublines: PC346DCC, PC346Flu1 and PC346Flu2. Methodology/Principal Findings: Microarray technology was used to analyze differences in gene expression between the androgen-responsive and therapy-resistant PC346 cell lines. Microarray analysis revealed 487 transcripts differentiallyexpressed between the androgen-responsive and the therapy-resistant cell lines. Most of these genes were common to all three therapy-resistant sublines and only a minority (,5%) was androgen-regulated. Pathway analysis revealed enrichment in functions involving cellular movement, cell growth and cell death, as well as association with cancer and reproductive system disease. PC346DCC expressed residual levels of androgen receptor (AR) and showed significant down-regulation of androgen-regulated genes (p-value = 10 27). Up-regulation of VAV3 and TWIST1 oncogenes and repression of the DKK3 tumor-suppressor was observed in PC346DCC, suggesting a potential AR bypass mechanism. Subsequent validation of these three genes in patient samples confirmed that expression was deregulated during prostate cancer progression

    Consensus molecular subtype classification of colorectal adenomas

    Get PDF
    Consensus molecular subtyping is an RNA expression-based classification system for colorectal cancer (CRC). Genomic alterations accumulate during CRC pathogenesis, including the premalignant adenoma stage, leading to changes in RNA expression. Only a minority of adenomas progress to malignancies, a transition that is associated with specific DNA copy number aberrations or microsatellite instability (MSI). We aimed to investigate whether colorectal adenomas can already be stratified into consensus molecular subtype (CMS) classes, and whether specific CMS classes are related to the presence of specific DNA copy number aberrations associated with progression to malignancy. RNA sequencing was performed on 62 adenomas and 59 CRCs. MSI status was determined with polymerase chain reaction-based methodology. DNA copy number was assessed by low-coverage DNA sequencing (n = 30) or array-comparative genomic hybridisation (n = 32). Adenomas were classified into CMS classes together with CRCs from the study cohort and from The Cancer Genome Atlas (n = 556), by use of the established CMS classifier. As a result, 54 of 62 (87%) adenomas were classified according to the CMS. The CMS3 ‘metabolic subtype’, which was least common among CRCs, was most prevalent among adenomas (n = 45; 73%). One of the two adenomas showing MSI was classified as CMS1 (2%), the ‘MSI immune’ subtype. Eight adenomas (13%) were classified as the ‘canonical’ CMS2. No adenomas were classified as the ‘mesenchymal’ CMS4, consistent with the fact that adenomas lack invasion-associated stroma. The distribution of the CMS classes among adenomas was confirmed in an independent series. CMS3 was enriched with adenomas at low risk of progressing to CRC, whereas relatively more high-risk adenomas were observed in CMS2. We conclude that adenomas can be stratified into the CMS classes. Considering that CMS1 and CMS2 expression signatures may mark adenomas at increased risk of progression, the distribution of the CMS classes among adenomas is consistent with the proportion of adenomas expected to progress to CRC

    Cell Line Characteristics Predict Subsequent Resistance to Androgen Receptor-Targeted Agents (ARTA) in Preclinical Models of Prostate Cancer

    Get PDF
    Treatment of prostate cancer (PCa) has changed considerably in the last decade due to the introduction of novel androgen receptor (AR)-targeted agents (ARTAs) for patients progressing on androgen deprivation therapy (ADT). Preclinical research however still relies heavily on AR-negative cell line models. In order to investigate potential differences in castration-resistant PCa (CRPC) growth, we set out to create a comprehensive panel of ARTA-progressive models from 4 androgen-responsive AR wild-type PCa cell lines and analyzed its androgen response as opposed to its ADT-progressive counterparts. Parallel cultures of VCaP, DuCaP, PC346C, and LAPC4 were established in their respective culture media with steroid-stripped fetal calf serum (FCS) [dextran-coated charcoal-stripped FCS (DCC)] without androgen (ADT) or in DCC plus 1 μM of the ARTAs bicalutamide, OH-flutamide, or RD162 (an enzalutamide/apalutamide analog). Cell growth was monitored and compared to those of parental cell lines. Short-term androgen response was measured using cell proliferation 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. qRT-PCR was performed to assess the mRNA expression of markers for AR signaling, steroidogenesis, glucocorticoid receptor (GR) signaling, epithelial-mesenchymal transition (EMT), and WNT signaling. Out of 35 parallel cultures per cell line, a total of 24, 15, 34, and 16 CRPC sublines emerged for VCaP, DuCaP, PC346C, and LAPC4, respectively. The addition of bicalutamide or OH-flutamide significantly increased CRPC growth compared to ADT or RD162. VCaP, DuCaP, and PC346C CRPC clones retained an AR-responsive phenotype. The expression of AR and subsequent androgen response were completely lost in all LAPC4 CRPC lines. Markers for EMT and WNT signaling were found to be elevated in the resilient PC346C model and CRPC derivatives of VCaP, DuCaP, and LAPC4. Although the resistant phenotype is pluriform between models, it seems consistent within models, regardless of type of ARTA. These data suggest that the progression to and the phenotype of the CRPC state might already be determined early in carcinogenesis
    corecore