1,388 research outputs found

    Measuring Transit Signal Recovery in the Kepler Pipeline II: Detection Efficiency as Calculated in One Year of Data

    Get PDF
    The Kepler planet sample can only be used to reconstruct the underlying planet occurrence rate if the detection efficiency of the Kepler pipeline is known, here we present the results of a second experiment aimed at characterising this detection efficiency. We inject simulated transiting planet signals into the pixel data of ~10,000 targets, spanning one year of observations, and process the pixels as normal. We compare the set of detections made by the pipeline with the expectation from the set of simulated planets, and construct a sensitivity curve of signal recovery as a function of the signal-to-noise of the simulated transit signal train. The sensitivity curve does not meet the hypothetical maximum detection efficiency, however it is not as pessimistic as some of the published estimates of the detection efficiency. For the FGK stars in our sample, the sensitivity curve is well fit by a gamma function with the coefficients a = 4.35 and b = 1.05. We also find that the pipeline algorithms recover the depths and periods of the injected signals with very high fidelity, especially for periods longer than 10 days. We perform a simplified occurrence rate calculation using the measured detection efficiency compared to previous assumptions of the detection efficiency found in the literature to demonstrate the systematic error introduced into the resulting occurrence rates. The discrepancies in the calculated occurrence rates may go some way towards reconciling some of the inconsistencies found in the literature.Comment: 13 pages, 7 figures, 1 electronic table, accepted by Ap

    Measuring Transit Signal Recovery in the Kepler Pipeline. III. Completeness of the Q1-Q17 DR24 Planet Candidate Catalogue, with Important Caveats for Occurrence Rate Calculations

    Get PDF
    With each new version of the Kepler pipeline and resulting planet candidate catalogue, an updated measurement of the underlying planet population can only be recovered with an corresponding measurement of the Kepler pipeline detection efficiency. Here, we present measurements of the sensitivity of the pipeline (version 9.2) used to generate the Q1-Q17 DR24 planet candidate catalog (Coughlin et al. 2016). We measure this by injecting simulated transiting planets into the pixel-level data of 159,013 targets across the entire Kepler focal plane, and examining the recovery rate. Unlike previous versions of the Kepler pipeline, we find a strong period dependence in the measured detection efficiency, with longer (>40 day) periods having a significantly lower detectability than shorter periods, introduced in part by an incorrectly implemented veto. Consequently, the sensitivity of the 9.2 pipeline cannot be cast as a simple one-dimensional function of the signal strength of the candidate planet signal as was possible for previous versions of the pipeline. We report on the implications for occurrence rate calculations based on the Q1-Q17 DR24 planet candidate catalog and offer important caveats and recommendations for performing such calculations. As before, we make available the entire table of injected planet parameters and whether they were recovered by the pipeline, enabling readers to derive the pipeline detection sensitivity in the planet and/or stellar parameter space of their choice.Comment: 8 pages, 5 figures, full electronic version of Table 1 available at the NASA Exoplanet Archive; accepted by ApJ May 2nd, 201

    Juvenile Green Sturgeon (\u3ci\u3eAcipenser medirostris\u3c/i\u3e) and White Sturgeon (\u3ci\u3eAcipenser transmontanus\u3c/i\u3e) Behavior Near Water-Diversion Fish Screens: Experiments in a Laboratory Swimming Fume

    Get PDF
    Water diversions that extract fresh water for urban, industrial, and agricultural uses, as well as export to southern California, are prevalent throughout the Sacramento–San Joaquin watershed. Many water diversions are fitted with fish-exclusion screens designed to prevent fish from entrainment (i.e., being drawn in). The impact of fish screens on the behavior of migrating juvenile fishes remains largely unknown, especially for threatened species such as sturgeon. We placed individual juvenile green (Acipenser medirostris) or white (Acipenser transmontanus) sturgeon in a laboratory swimming flume in the presence of standard fish screens (2 mm bar spacing) at two field-relevant water velocities (20.4 ± 0.1 and 37.3 ± 0.3 cm·s−1). Fish were tested at 18°C for 15 min during the day or night and in the presence of possible behavioral deterrents. Behavioral responses, including screen contacts, impingements, and time spent near screens were quantified. Green sturgeon contacted and impinged upon the screens twice as frequently as white sturgeon and also differed in how their behaviors were altered by water velocities and time of day. Our results are informative in developing effective management strategies to mitigate the impacts of water diversions on sturgeon populations and suggest that effective restoration strategies for both species should be considered separately

    The effect of size on juvenile green sturgeon (\u3ci\u3eAcipenser medirostris\u3c/i\u3e) behavior near water-diversion fish screens

    Get PDF
    Anthropogenic water management projects and facilities that alter the local and regional hydrology of riverine environments greatly influence the behavior, physiology, and survival of native fishes. To mitigate for losses of native fishes at these structures, many are outfitted with fish-exclusion screens to reduce entrainment. The effect of fish size and age on behavior near fish screens, however, is largely unknown. Therefore, we tested two size classes of juvenile green sturgeon (Acipenser medirostris; small, early juveniles: 9.2 ± 0.2 cm fork length [FL], 6.9 ± 0.3 g; intermediate juveniles: 18.8 ± 0.2 cm FL, 36.9 ± 0.8 g) near fish-exclusion screens in a laboratory swimming flume. Although size was a significant factor influencing the way in which fish contacted the screens (i.e., proportion of body contacts, p = 2.5×10−9), it did not significantly influence the number of times fish contacted screens or the amount of time fish spent near screens. We also compared the performance of these two size classes to that of older and larger sturgeon that were tested previously (29.6 ± 0.2 cm FL, 147.1 ± 3.1 g), and documented a clear difference in the behavior of the fish that resulted in disparities in how the large fish contacted screens relative to small- or intermediate-sized juveniles (p = 0.005, 5.4 × 10−4, respectively). Our results further our understanding of how ontogeny affects fish behavior near anthropogenic devices, and are informative for managers seeking to identify the most susceptible size and age class of juvenile green sturgeon to water-diversion structures to potentially develop size-specific conservation strategies

    Evaluation of Criteria to Detect Masked Hypertension

    Get PDF
    The prevalence of masked hypertension, out-of-clinic daytime systolic/diastolic blood pressure (SBP/DBP)≥135/85 mmHg on ambulatory blood pressure monitoring (ABPM) among adults with clinic SBP/DBP<140/90 mmHg, is high. It is unclear who should be screened for masked hypertension. We derived a clinic blood pressure (CBP) index to identify populations for masked hypertension screening. Index cut-points corresponding to 75% to 99% sensitivity and prehypertension were evaluated as ABPM testing criterion. In a derivation cohort (n=695), the index was clinic SBP+1.3*clinic DBP. In an external validation cohort (n=675), the sensitivity for masked hypertension using an index ≥190 mmHg and ≥217 mmHg and prehypertension status was 98.5%, 71.5% and 82.5%, respectively. Using NHANES data (n=11,778), we estimated that these thresholds would refer 118.6, 44.4 and 59.3 million US adults, respectively, to ABPM screening for masked hypertension. In conclusion, the CBP index provides a useful approach to identify candidates for masked hypertension screening using ABPM

    Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample

    Get PDF
    We measure planet occurrence rates using the planet candidates discovered by the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates for the Kepler GK dwarf target sample for planet radii, 0.75<Rp<2.5 Rearth, and orbital periods, 50<Porb<300 days, with an emphasis on a thorough exploration and identification of the most important sources of systematic uncertainties. Integrating over this parameter space, we measure an occurrence rate of F=0.77 planets per star, with an allowed range of 0.3<F<1.9. The allowed range takes into account both statistical and systematic uncertainties, and values of F beyond the allowed range are significantly in disagreement with our analysis. We generally find higher planet occurrence rates and a steeper increase in planet occurrence rates towards small planets than previous studies of the Kepler GK dwarf sample. Through extrapolation, we find that the one year orbital period terrestrial planet occurrence rate, zeta_1=0.1, with an allowed range of 0.01<zeta_1<2, where zeta_1 is defined as the number of planets per star within 20% of the Rp and Porb of Earth. For G dwarf hosts, the zeta_1 parameter space is a subset of the larger eta_earth parameter space, thus zeta_1 places a lower limit on eta_earth for G dwarf hosts. From our analysis, we identify the leading sources of systematics impacting Kepler occurrence rate determinations as: reliability of the planet candidate sample, planet radii, pipeline completeness, and stellar parameters.Comment: 19 Pages, 17 Figures, Submitted ApJ. Python source to support Kepler pipeline completeness estimates available at http://github.com/christopherburke/KeplerPORTs

    Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25

    Full text link
    We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching 4 yr of Kepler time series photometry (Data Release 25, Q1–Q17). The catalog contains 8054 KOIs, of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new, including two in multiplanet systems (KOI-82.06 and KOI-2926.05) and 10 high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter, which automatically vets the DR25 threshold crossing events (TCEs). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discuss the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK-dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits, and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive

    Establishing the effectiveness of patient decision aids: key constructs and measurement instruments

    Get PDF
    Background: Establishing the effectiveness of patient decision aids (PtDA) requires evidence that PtDAs improve the quality of the decision-making process and the quality of the choice made, or decision quality. The aim of this paper is to review the theoretical and empirical evidence for PtDA effectiveness and discuss emerging practical and research issues in the measurement of effectiveness. Methods: This updated overview incorporates: a) an examination of the instruments used to measure five key decision-making process constructs (i.e., recognize decision, feel informed about options and outcomes, feel clear about goals and preferences, discuss goals and preferences with health care provider, and be involved in decisions) and decision quality constructs (i.e., knowledge, realistic expectations, values-choice agreement) within the 86 trials in the Cochrane review; and b) a summary of the 2011 Cochrane Collaboration’s review of PtDAs for these key constructs. Data on the constructs and instruments used were extracted independently by two authors from the 86 trials and any disagreements were resolved by discussion, with adjudication by a third party where required. Results: The 86 studies provide considerable evidence that PtDAs improve the decision-making process and decision quality. A majority of the studies (76/86; 88%) measured at least one of the key decision-making process or decision quality constructs. Seventeen different measurement instruments were used to measure decision-making process constructs, but no single instrument covered all five constructs. The Decisional Conflict Scale was most commonly used (n = 47), followed by the Control Preference Scale (n = 9). Many studies reported one or more constructs of decision quality, including knowledge (n = 59), realistic expectation of risks and benefits (n = 21), and values-choice agreement (n = 13). There was considerable variability in how values-choice agreement was defined and determined. No study reported on all key decision-making process and decision quality constructs. Conclusions: Evidence of PtDA effectiveness in improving the quality of the decision-making process and decision quality is strong and growing. There is not, however, consensus or standardization of measurement for either the decision-making process or decision quality. Additional work is needed to develop and evaluate measurement instruments and further explore theoretical issues to advance future research on PtDA effectiveness

    Seventy-Five Years (1940-2015) of Lehigh University\u27s Chemistry Department

    Get PDF
    The 75-years 1940 to 2015 have been exciting ones for the Department of Chemistry; new buildings, new programs, energetic young faculty, enhanced research image, and a far broader coverage of Chemistry than our ancestors ever presumed. Five chairs guided the department through its first 75-years but it took 11 chairs (with two of them serving twice) to manage the second 75-years. As one of the Lehigh founding departments in 1865 our first 75-years have already been covered. The reader is directed to a history written by Robert D. Billinger, A History of the Department of Chemistry and Chemical Engineering of Lehigh University, Bethlehem, Pennsylvania (1866-1941) which is available in original in the Lehigh Archives and as an on-line document. This sesquicentennial volume is also available in hardcopy with original illustrations in the archives or on-line
    corecore