10 research outputs found
Conformational Change of Mitochondrial Complex I Increases ROS Sensitivity During Ischemia
Aims: Myocardial ischemia/reperfusion (I/R) is associated with mitochondrial dysfunction and subsequent cardiomyocyte death. The generation of excessive quantities of reactive oxygen species (ROS) and resultant damage to mitochondrial enzymes is considered an important mechanism underlying reperfusion injury. Mitochondrial complex I can exist in two interconvertible states: active (A) and deactive or dormant (D). We have studied the active/deactive (A/D) equilibrium in several tissues under ischemic conditions in vivo and investigated the sensitivity of both forms of the heart enzyme to ROS. Results: We found that in the heart, t(½) of complex I deactivation during ischemia was 10 min, and that reperfusion resulted in the return of A/D equilibrium to its initial level. The rate of superoxide generation by complex I was higher in ischemic samples where content of the D-form was higher. Only the D-form was susceptible to inhibition by H(2)O(2) or superoxide, whereas turnover-dependent activation of the enzyme resulted in formation of the A-form, which was much less sensitive to ROS. The mitochondrial-encoded subunit ND3, most likely responsible for the sensitivity of the D-form to ROS, was identified by redox difference gel electrophoresis. Innovation: A combined in vivo and biochemical approach suggests that sensitivity of the mitochondrial system to ROS during myocardial I/R can be significantly affected by the conformational state of complex I, which may therefore represent a new therapeutic target in this setting. Conclusion: The presented data suggest that transition of complex I into the D-form in the absence of oxygen may represent a key event in promoting cardiac injury during I/R. Antioxid. Redox Signal. 19, 1459–1468
Recommended from our members
In Vivo Evaluation of Engineered Self-Assembling Silk Fibroin Hydrogels after Intracerebral Injection in a Rat Stroke Model
Targeting the brain cavity formed by an ischemic stroke is appealing for many regenerative treatment strategies but requires a robust delivery technology. We hypothesized that self-assembling silk fibroin hydrogels could serve as a reliable support matrix for regeneration in the stroke cavity. We therefore performed in vivo evaluation studies of self-assembling silk fibroin hydrogels after intracerebral injection in a rat stroke model. Adult male Sprague-Dawley rats (n = 24) underwent transient middle cerebral artery occlusion (MCAo) 2 weeks before random assignment to either no stereotaxic injection or a stereotaxic injection of either self-assembling silk fibroin hydrogels (4% w/v) or PBS into the lesion cavity. The impact on morbidity and mortality, space conformity, interaction with glial scar, interference with inflammatory response, and cell proliferation in the lesion cavity were examined for up to 7 weeks by a blinded investigator. Self-assembling hydrogels filled the stroke cavity with excellent space conformity and presented neither an overt microglial/macrophage response nor an adverse morbidity or mortality. The relationship between the number of proliferating cells and lesion volume was significantly changed by injection of self-assembling silk hydrogels. This in vivo stroke model confirmed that self-assembling silk fibroin hydrogels provide a favorable microenvironment as a future support matrix in the stroke cavity. Copyright © 2018 American Chemical Society
In vivo evaluation of engineered self-assembling silk fibroin hydrogels after intracerebral injection in a rat stroke model
Targeting the brain cavity formed by an ischaemic stroke is appealing for many regenerative treatment strategies, but requires a robust delivery technology. We hypothesised that self-assembling silk fibroin hydrogels could serve as a reliable support matrix for regeneration in the stroke cavity. We therefore performed in vivo evaluation studies of self-assembling silk fibroin hydrogels after intracerebral injection in a rat stroke model. Adult male Sprague Dawley rats (n=24) underwent transient middle cerebral artery occlusion (MCAo) 2 weeks before random assignment to either no stereotaxic injection or a stereotaxic injection of either self-assembling silk fibroin hydrogels (4% w/v) or PBS into the lesion cavity. The impact on morbidity and mortality, space conformity, interaction with glial scar, interference with inflammatory response and cell proliferation in the lesion cavity were examined for up to 7 weeks by a blinded investigator. Self-assembling hydrogels filled the stroke cavity with excellent space conformity and presented neither an overt microglial/macrophage response nor an adverse morbidity or mortality. The relationship between the number of proliferating cells and lesion volume was significantly changed by injection of self-assembling silk hydrogels. This in vivo stroke model confirmed that self-assembling silk fibroin hydrogels provide a favourable microenvironment as a future support matrix in the stroke cavity
Neuropsychological Disorders Indicative of Postresuscitation Encephalopaty in Rats
El propósito de este estudio fue examinar el efecto de una muerte clínica de 12 minutos de duración sobre el comportamiento innato y adquirido, la concentración amino biogénica, y la composición y cantidad de las poblaciones neuronales en regiones específicas en ratas blancas. El estudio muestra que durante el período con restauración formal del estatus neurológico, hay cambios en los animales en la reactividad emocional, las reacciones de orientación-exploración, trastornos de aprendizaje y memoria, reducción de la tolerancia al ejercicio y la sensibilidad al dolor. Estos procesos se acompañan de alteraciones en los niveles de serotonina y norepinefrina en la corteza cerebral frontal, en los niveles de dopamina y serotonina en el cuerpo estriado, ciertos índices bioquímicos en el plasma sanguíneo y pérdida neuronal en el sector CA1 del hipocampo y en porciones laterales del cerebelo.The aim of this research was to study the effect of 12-minute clinical death on innate and acquired behavior, biogenic amine concentration, and the composition and quantity of neural populations in specific brain regions of white rats. The study shows that in animals during the postresuscitation period with formal restoration of neurological status, there are changes in emotional reactivity, orientation-exploration reactions, impairment of learning and memory, decrease in exercise tolerance and pain sensitivity. These processes are accompanied by alterations in serotonin and norepinephrine levels in the frontal cerebral cortex, dopamine and serotonin levels in the striatum, certain biochemical indices in blood plasma and neural loss in the CA1 sector of the hippocampus and lateral portions of the cerebellum
The innate immune response of self-assembling silk fibroin hydrogels
Silk has a long track record of use in humans, and recent advances in silk fibroin processing have opened up new material formats. However, these new formats and their applications have subsequently created a need to ascertain their biocompatibility. Therefore, the present aim was to quantify the haemocompatibility and inflammatory response of silk fibroin hydrogels. This work demonstrated that self-assembled silk fibroin hydrogels, as one of the most clinically relevant new formats, induced very low blood coagulation and platelet activation but elevated the inflammatory response of human whole blood in vitro. In vivo bioluminescence imaging of neutrophils and macrophages showed an acute, but mild, local inflammatory response which was lower than or similar to that induced by polyethylene glycol, a benchmark material. The time-dependent local immune response in vivo was corroborated by histology, immunofluorescence and murine whole blood analyses. Overall, this study confirms that silk fibroin hydrogels induce a similar immune response to that of PEG hydrogels, while also demonstrating the power of non-invasive bioluminescence imaging for monitoring tissue responses
The late response of rat subependymal zone stem and progenitor cells to stroke is restricted to directly affected areas of their niche
AbstractIschaemia leads to increased proliferation of progenitors in the subependymal zone (SEZ) neurogenic niche of the adult brain and to generation and migration of newborn neurons. Here we investigated the spatiotemporal characteristics of the mitotic activity of adult neural stem and progenitor cells in the SEZ during the sub-acute and chronic post-ischaemic phases. Ischaemia was induced by performing a 1h unilateral middle cerebral artery occlusion (MCAO) and tissue was collected 4/5weeks and 1year after the insult. Neural stem cells (NSCs) responded differently from their downstream progenitors to MCAO, with NSCs being activated only transiently whilst progenitors remain activated even at 1year post-injury. Importantly, mitotic activation was observed only in the affected areas of the niche and specifically in the dorsal half of the SEZ. Analysis of the topography of mitoses, in relation to the anatomy of the lesion and to the position of ependymal cells and blood vessels, suggested an interplay between lesion-derived recruiting signals and the local signals that normally control proliferation in the chronic post-ischaemic phase
Prolonged diet-induced obesity in mice modifies the inflammatory response and leads to worse outcome after stroke
BACKGROUND: Obesity increases the risk for ischaemic stroke and is associated with worse outcome clinically and experimentally. Most experimental studies have used genetic models of obesity. Here, a more clinically relevant model, diet-induced obesity, was used to study the impact of obesity over time on the outcome and inflammatory response after stroke. METHODS: Male C57BL/6 mice were maintained on a high-fat (60% fat) or control (12% fat) diet for 2, 3, 4 and 6 months when experimental stroke was induced by transient occlusion of the middle cerebral artery (MCAo) for either 20 (6-month diet) or 30 min (2-, 3-, 4- and 6-month diet). Ischaemic damage, blood-brain barrier (BBB) integrity, neutrophil number and chemokine expression in the brain were assessed at 24 h. Plasma chemokine levels (at 4 and 24 h) and neutrophil number in the liver (at 24 h) were measured. Physiological parameters (body weight and blood glucose) were measured in naïve control- and high-fat-fed mice at all time points and blood pressure at 3 and 6 months. Blood cell counts were also assessed in naïve 6-month control- and high-fat-fed mice. RESULTS: Mice fed a high-fat diet for 6 months had greater body weight, blood glucose and white and red blood cell count but no change in systolic blood pressure. After 4 and 6 months of high-fat feeding, and in the latter group with a 30-min (but not 20-min) occlusion of the MCA, obese mice had greater ischaemic brain damage. An increase in blood-brain barrier permeability, chemokine expression (CXCL-1 and CCL3), neutrophil number and microglia/macrophage cells was observed in the brains of 6-month high-fat-fed mice after 30-min MCAo. In response to stroke, chemokine (CXCL-1) expression in the plasma and liver was significantly different in obese mice (6-month high-fat fed), and a greater number of neutrophils were detected in the liver of control but not obese mice. CONCLUSIONS: The detrimental effects of diet-induced obesity on stroke were therefore dependent on the severity of obesity and length of ischaemic challenge. The altered inflammatory response in obese mice may play a key role in its negative impact on stroke
Conformational Change of Mitochondrial Complex I Increases ROS Sensitivity During Ischemia
Exterior, general vie
A Comparison of Automated Anatomical-Behavioural Mapping Methods in a Rodent Model of Stroke
Neurological damage, due to conditions such as stroke, results in a complex pattern of structural changes and significant behavioural dysfunctions; the automated analysis of magnetic resonance imaging (MRI) and discovery of structural-behavioural correlates associated with these disorders remains challenging. Voxel lesion symptom mapping (VLSM) has been used to associate behaviour with lesion location in MRI, but this analysis requires the definition of lesion masks on each subject and does not exploit the rich structural information in the images. Tensor-based morphometry (TBM) has been used to perform voxel-wise structural analyses over the entire brain; however, a combination of lesion hyper-intensities and subtle structural remodelling away from the lesion might confound the interpretation of TBM. In this study, we compared and contrasted these techniques in a rodent model of stroke (n=58) to assess the efficacy of these techniques in a challenging pre-clinical application. The results from the automated techniques were compared using manually derived region-of-interest measures of the lesion, cortex, striatum, ventricle and hippocampus, and considered against model power calculations. The automated TBM techniques successfully detect both lesion and non-lesion effects, consistent with manual measurements. These techniques do not require manual segmentation to the same extent as VLSM and should be considered part of the toolkit for the unbiased analysis of pre-clinical imaging-based studies