9 research outputs found

    Evaluation of anti-fatigue property of the extruded product of cereal grains mixed with Cordyceps militaris on mice

    No full text
    Abstract Background Fatigue is a biological phenomenon that involves a feeling of extreme physical or mental tiredness that could potentially cause some severe chronic diseases. Recently, diet therapy has provided a new alternative to alleviate physical fatigue. In our previous study, addition of Cordyceps militaris (C. militaris) into an extruded product was shown to provide high nutrition and unique flavors; however, little is known whether this product has some scientific evidence regarding anti-fatigue property. The purpose of this study was to evaluate the anti-fatigue effects of extruded products of cereal grains (EC) and EC mixed with C. militaris (ECC). Methods The mice were divided into seven groups: one group received distilled water (Control group, n = 20), and the other groups received different dosages of EC (5, 10 and 20 g/kg body weight, n = 20 per group) or of ECC (5, 10 and 20 g/kg body weight, n = 20 per group) solution in water. All of the mice were administered with distilled water, EC or ECC continuously for 30 days by gavage and the anti-fatigue activity was evaluated using a weight-loaded swimming test, along with assessments of fatigue-related indicators. The mode of fighting fatigue was investigated by determining changes in exercise endurance and biochemical markers, including exhaustive swimming time, lactate dehydrogenase (LDH), blood lactic acid (BLA), creatine kinase (CK), blood urea nitrogen (BUN), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and hepatic and muscle glycogen levels. Results EC and ECC prolonged the swimming endurance time of mice compared to the control. The content of BLA at high dose of ECC group (20 g/kg) was significantly lower than that in the negative control group. CK, BUN and MDA levels were significantly reduced by treatment with EC and ECC compared to the negative control, while the low and middle dose of EC had no significant effect on MDA levels. Additionally, only the middle and high dose of EC (10, 20 g/kg) could significantly decrease the BUN level. EC and ECC treatments increased glycogen, LDH, SOD, CAT and GSH-Px levels. Low and middle dose of EC had no significant effects on muscle glycogen. Moreover, low dose of EC could increase the level of SOD but it was not statistically significant. Compared to the EC treatment groups, ECC demonstrated the efficacy of anti-fatigue potential, particularly at a high dose of ECC, the best performance in relieving fatigue. Conclusions These results suggest that EC and ECC could prevent exercise-induced fatigue in mice and ECC provided a better effect. In addition, C. militaris in ECC might play a crucial role in the anti-fatigue activity of ECC

    Phaseoleae

    No full text
    corecore