12 research outputs found

    Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours

    No full text
    The lack of appropriate mouse models is likely one of the reasons of a limited translational success rate of therapeutic vaccines against cervical cancer, as rapidly growing ectopic tumours are commonly used for preclinical studies. In this work, we demonstrate that the tumour microenvironment of TC-1 tumours differs significantly depending on the anatomical location of tumour lesions (i.e. subcutaneously, in the lungs and in the genital tract). Our data demonstrate that E7-TriMix mRNA vaccine-induced CD8(+) T lymphocytes migrate into the tumour nest and control tumour growth, although they do not express mucosa-associated markers such as CD103 or CD49a. We additionally show that despite the presence of the antigen-specific T cells in the tumour lesions, the therapeutic outcomes in the genital tract model remain limited. Here, we report that such a hostile tumour microenvironment can be reversed by cisplatin treatment, leading to a complete regression of clinically relevant tumours when combined with mRNA immunization. We thereby demonstrate the necessity of utilizing clinically relevant models for preclinical evaluation of anticancer therapies and the importance of a simultaneous combination of anticancer immune response induction with targeting of tumour environment

    Surface Phonons: Theoretical Methods and Results

    No full text
    peer reviewedThe theoretical methods currently in use for the calculation of surface phononsurface phonon dispersion curves and how they have evolved from the phenomenological force-constant models to the present day first principles theories are discussed. A selection of paradigmatic examples for the different classes of crystal surfaces is presented with comparisons to the experimental data obtained from helium atom scattering or electron energy-loss spectroscopy. © 2020, Springer Nature Switzerland AG
    corecore