7 research outputs found
Genetic backgrounds and redox conditions influence morphological characteristics and cell differentiation of osteoclasts in mice
Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H 2O 2) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs
Gene-Activated Matrix with Self-Assembly Anionic Nano-Device Containing Plasmid DNAs for Rat Cranial Bone Augmentation
We have developed nanoballs, a biocompatible self-assembly nano-vector based on electrostatic interactions that arrange anionic macromolecules to polymeric nanomaterials to create nucleic acid carriers. Nanoballs exhibit low cytotoxicity and high transfection efficiently in vivo. This study investigated whether a gene-activated matrix (GAM) composed of nanoballs containing plasmid (p) DNAs encoding bone morphogenetic protein 4 (pBMP4) could promote bone augmentation with a small amount of DNA compared to that composed of naked pDNAs. We prepared nanoballs (BMP4-nanoballs) constructed with pBMP4 and dendrigraft poly-L-lysine (DGL, a cationic polymer) coated by γ-polyglutamic acid (γ-PGA; an anionic polymer), and determined their biological functions in vitro and in vivo. Next, GAMs were manufactured by mixing nanoballs with 2% atelocollagen and β-tricalcium phosphate (β-TCP) granules and lyophilizing them for bone augmentation. The GAMs were then transplanted to rat cranial bone surfaces under the periosteum. From the initial stage, infiltrated macrophages and mesenchymal progenitor cells took up the nanoballs, and their anti-inflammatory and osteoblastic differentiations were promoted over time. Subsequently, bone augmentation was clearly recognized for up to 8 weeks in transplanted GAMs containing BMP4-nanoballs. Notably, only 1 μg of BMP4-nanoballs induced a sufficient volume of new bone, while 1000 μg of naked pDNAs were required to induce the same level of bone augmentation. These data suggest that applying this anionic vector to the appropriate matrices can facilitate GAM-based bone engineering
Behavior of an Ion in a Bubble in the Ground State
Deuterons might be trapped in a bubble embryo which occur s due to statistical fluctuation in heavy water. The size of the bubble embryo is expected to be an order of a small molecule. The ground state energy level which the deuteron may occupy in the bubble is calculated by solving the Schroedinger equation, and by considering the interaction between the trapped deuteron by a spherical bubble and the surrounding polarized liquid medium (heavy water). From the dependence of the energy eigenvalue of the ground state on the bubble radius, the pressure exerted on the bubble wall is obtained. It is found that the pressure is negatively very large if the bubble radius is about the molecular size (3 to 7 Å). From extrapolating this result to larger sizes, we expect that a bubble would quickly collapse if enough energy is supplied and never grows to a stable bubble when the deuteron is trapped in the ground state
Long-term effect of photodynamic therapy on oral squamous cell carcinoma and epithelial dysplasia
Background: Oral squamous cell carcinoma (OSCC) treatment consists mainly of surgery, chemotherapy, and radiotherapy, alone or in combination. Epithelial dysplasia (ED) is also treated with surgery. However, these treatments can induce functional and/or aesthetic disturbances. Photodynamic therapy (PDT) can preserve organs. Although short-term studies have shown good progress, long-term evaluations have not yet been conducted. This study aimed to clarify the long-term effects of PDT on OSCC and ED. Methods: Patients who underwent PDT with the first (porfimer sodium) or second generation photosensitizers (talaporfin sodium) for early OSCC (T1 and T2) and ED were included in this study. The long-term prognosis was assessed.Results: Twenty-three patients were included. Complete response (CR) was observed in 19 patients (82.6%) and partial response (PR) in 4 patients (17.4%) 4 weeks after PDT. Regarding long-term progress, local region recurrence occurred in 11 of 19 CR cases (57.9%), and the term of recurrence was 27.4 ± 30.4 months. Surgical resection was performed in all local recurrence and PR cases, and 3 patients died of the underlying disease.Conclusions: PDT provides a good outcome in the short term, but its long-term effects are limited
Gene-Activated Matrix with Self-Assembly Anionic Nano-Device Containing Plasmid DNAs for Rat Cranial Bone Augmentation
We have developed nanoballs, a biocompatible self-assembly nano-vector based on electrostatic interactions that arrange anionic macromolecules to polymeric nanomaterials to create nucleic acid carriers. Nanoballs exhibit low cytotoxicity and high transfection efficiently in vivo. This study investigated whether a gene-activated matrix (GAM) composed of nanoballs containing plasmid (p) DNAs encoding bone morphogenetic protein 4 (pBMP4) could promote bone augmentation with a small amount of DNA compared to that composed of naked pDNAs. We prepared nanoballs (BMP4-nanoballs) constructed with pBMP4 and dendrigraft poly-L-lysine (DGL, a cationic polymer) coated by γ-polyglutamic acid (γ-PGA; an anionic polymer), and determined their biological functions in vitro and in vivo. Next, GAMs were manufactured by mixing nanoballs with 2% atelocollagen and β-tricalcium phosphate (β-TCP) granules and lyophilizing them for bone augmentation. The GAMs were then transplanted to rat cranial bone surfaces under the periosteum. From the initial stage, infiltrated macrophages and mesenchymal progenitor cells took up the nanoballs, and their anti-inflammatory and osteoblastic differentiations were promoted over time. Subsequently, bone augmentation was clearly recognized for up to 8 weeks in transplanted GAMs containing BMP4-nanoballs. Notably, only 1 μg of BMP4-nanoballs induced a sufficient volume of new bone, while 1000 μg of naked pDNAs were required to induce the same level of bone augmentation. These data suggest that applying this anionic vector to the appropriate matrices can facilitate GAM-based bone engineering