179 research outputs found
C ion-implanted TiO2 thin film for photocatalytic applications
Third-generation TiO2 photocatalysts were prepared by implantation of C+ ions into 110 nm thick TiO2 films. An accurate structural investigation was performed by Rutherford backscattering spectrometry, secondary ion mass spectrometry, X-ray diffraction, Raman-luminescence spectroscopy, and UV/VIS optical characterization. The C doping locally modified the TiO2 pure films, lowering the band-gap energy from 3.3 eV to a value of 1.8 eV, making the material sensitive to visible light. The synthesized materials are photocatalytically active in the degradation of organic compounds in water under both UV and visible light irradiation, without the help of any additional thermal treatment. These results increase the understanding of the C-doped titanium dioxide, helpful for future environmental applications. (C) 2015 AIP Publishing LLC
Low temperature deactivation of Ge heavily n-type doped by ion implantation and laser thermal annealing
International audienceHeavy doping of Ge is crucial for several advanced micro-and optoelectronic applications, but, at the same time, it still remains extremely challenging. Ge heavily n-type doped at a concentration of 1 X 10(20) cm(-3) by As ion implantation and melting laser thermal annealing (LTA) is shown here to be highly metastable. Upon post-LTA conventional thermal annealing As electrically deactivates already at 350 degrees C reaching an active concentration of similar to 4 x 10(19) cm(-3). No significant As diffusion is detected up to 450 degrees C, where the As activation decreases further to similar to 3 x 10(19) cm(-3). The reason for the observed detrimental deactivation was investigated by Atom Probe Tomography and in situ High Resolution X-Ray Diffraction measurements. In general, the thermal stability of heavily doped Ge layers needs to be carefully evaluated because, as shown here, deactivation might occur at very low temperatures, close to those required for low resistivity Ohmic contacting of n-type Ge
Role of fluorine in suppressing boron transient enhanced diffusion in preamorphized Si
We have explained the role of fluorine in the reduction of the self-interstitial population in a preamorphized Si layer under thermal treatment. For this purpose, we have employed a B spike layer grown by molecular-beam epitaxy as a marker for the self-interstitial local concentration. The amorphized samples were implanted with 731012, 731013, or 431014 F/cm2 at 100 keV, and afterwards recrystallized by solid phase epitaxy. Thermal anneals at 750 or 850 °C were performed in order to induce the release of self-interstitials from the end-of-range (EOR) defects and thus provoke the transient enhanced diffusion of B atoms. We have shown that the incorporation of F reduces the B enhanced diffusion in a controlled way, up to its complete suppression. It is seen that no direct interaction between B and F occurs, whereas the suppression of B enhanced diffusion is related to the F ability in reducing the excess of silicon self-interstitials emitted by the EOR source. These results are reported and discussed
Heavily-doped Germanium on Silicon with Activated Doping Exceeding 1020 cmâ3 as an Alternative to Gold for Mid-infrared Plasmonics
Ge-on-Si has been demonstrated as a platform for Si foundry compatible plasmonics. We use laser thermal annealing to demonstrate activated doping levels >1020 cm-3 which allows most of the 3 to 20 ÎŒm mid-infrared sensing window to be covered with enhancements comparable to gold plasmonics
Extended point defects in crystalline materials: Ge and Si
B diffusion measurements are used to probe the basic nature of
self-interstitial 'point' defects in Ge. We find two distinct self-interstitial
forms - a simple one with low entropy and a complex one with entropy ~30 k at
the migration saddle point. The latter dominates diffusion at high temperature.
We propose that its structure is similar to that of an amorphous pocket - we
name it a 'morph'. Computational modelling suggests that morphs exist in both
self-interstitial and vacancy-like forms, and are crucial for diffusion and
defect dynamics in Ge, Si and probably many other crystalline solids
Synthesis of Large-Area Crystalline MoS2 by Sputter Deposition and Pulsed Laser Annealing
The wafer-scale synthesis of layered transitional metal dichalcogenides presenting good crystal quality and homogeneous coverage is a challenge for the development of next-generation electronic devices. This work explores a fairly unconventional growth method based on a two-step process consisting in sputter deposition of stochiometric MoS2 on Si/SiO2 substrates followed by nanosecond UV (248 nm) pulsed laser annealing. Large-scale 2H-MoS2 multi-layer films were successfully synthetized in a N2-rich atmosphere thanks to a fine-tuning of the laser annealing parameters by varying the number of laser pulses and their energy density. The identification of the optimal process led to the success in achieving a (002)-oriented nanocrystalline MoS2 film without performing post-sulfurization. It is noteworthy that the spatial and temporal confinement of laser annealing keeps the Si/SiO2 substrate temperature well below the back-end-of-line temperature limit of Si CMOS technology (770 K). The synthesis method described here can speed up the integration of large-area 2D materials with Si-based devices, paving the way for many important applications
Tunability and Losses of Mid-infrared Plasmonics in Heavily Doped Germanium Thin Films
Heavily-doped semiconductor films are very promising for application in
mid-infrared plasmonic devices because the real part of their dielectric
function is negative and broadly tunable in this wavelength range. In this work
we investigate heavily n-type doped germanium epilayers grown on different
substrates, in-situ doped in the to cm range, by
infrared spectroscopy, first principle calculations, pump-probe spectroscopy
and dc transport measurements to determine the relation between plasma edge and
carrier density and to quantify mid-infrared plasmon losses. We demonstrate
that the unscreened plasma frequency can be tuned in the 400 - 4800 cm
range and that the average electron scattering rate, dominated by scattering
with optical phonons and charged impurities, increases almost linearly with
frequency. We also found weak dependence of losses and tunability on the
crystal defect density, on the inactivated dopant density and on the
temperature down to 10 K. In films where the plasma was optically activated by
pumping in the near-infrared, we found weak but significant dependence of
relaxation times on the static doping level of the film. Our results suggest
that plasmon decay times in the several-picosecond range can be obtained in
n-type germanium thin films grown on silicon substrates hence allowing for
underdamped mid-infrared plasma oscillations at room temperature.Comment: 18 pages, 10 figure
Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection
Obtaining short-wavelength-infrared (SWIR; 1.4 ÎŒmâ3.0 ÎŒm) room-temperature photodetection in a low-cost, group IV semiconductor is desirable for numerous applications. We demonstrate a non-equilibrium method for hyperdoping germanium with selenium or tellurium for dopant-mediated SWIR photodetection. By ion-implanting Se or Te into Ge wafers and restoring crystallinity with pulsed laser melting induced rapid solidification, we obtain single crystalline materials with peak Se and Te concentrations of 1020 cmâ3 (104 times the solubility limits). These hyperdoped materials exhibit sub-bandgap absorption of light up to wavelengths of at least 3.0 ÎŒm, with their sub-bandgap optical absorption coefficients comparable to those of commercial SWIR photodetection materials. Although previous studies of Ge-based photodetectors have reported a sub-bandgap optoelectronic response only at low temperature, we report room-temperature sub-bandgap SWIR photodetection at wavelengths as long as 3.0 ÎŒm from rudimentary hyperdoped Ge:Se and Ge:Te photodetectors
Gold-hyperdoped Germanium with Room-Temperature Sub-bandgap Optoelectronic Response
Hyperdoping germanium with gold is a potential method to produce room-temperature short-wavelength-infrared radiation (SWIR; 1.4â3.0ÎŒm) photodetection. We investigate the charge carrier dynamics, light absorption, and structural properties of gold-hyperdoped germanium (Ge:Au) fabricated with varying ion implantation and nanosecond pulsed laser melting conditions. Time-resolved terahertz spectroscopy (TRTS) measurements show that Ge:Au carrier lifetime is significantly higher than that in previously studied hyperdoped silicon systems. Furthermore, we find that lattice composition, sub-band-gap optical absorption, and carrier dynamics depend greatly on hyperdoping conditions. We use density functional theory (DFT) to model dopant distribution, electronic band structure, and optical absorption. These simulations help explain experimentally observed differences in optical and optoelectronic behavior across different samples. DFT modeling reveals that substitutional dopant incorporation has the lowest formation energy and leads to deep energy levels. In contrast, interstitial or dopant-vacancy complex incorporation yields shallower energy levels that do not contribute to sub-band-gap light absorption and have a small effect on charge carrier lifetimes. These results suggest that it is promising to tailor dopant incorporation sites of Ge:Au for SWIR photodetection applications
Ge-on-Si Based Mid-infrared Plasmonics
In the last decade, silicon photonics has undergone an impressive development driven by an increasing number of technological applications. Plasmonics has not yet made its way to the microelectronic industry, mostly because of the lack of compatibility of typical plasmonic materials with foundry processes. In this framework, we have developed a plasmonic platform based on heavily n-doped Ge grown on silicon substrates. We developed growth protocols to reach n-doping levels exceeding 1020 cm-3, allowing us to tune the plasma wavelength of Ge in the 3-15 ÎŒm range. The plasmonic resonances of Ge-on-Si nanoantennas have been predicted by simulations, confirmed by experimental spectra and exploited for molecular sensing. Our work represents a benchmark for group-IV mid-IR plasmonics
- âŠ