134 research outputs found
Dynamic Thermal Analysis of a Power Amplifier
This paper presents dynamic thermal analyses of a power amplifier. All the
investigations are based on the transient junction temperature measurements
performed during the circuit cooling process. The presented results include the
cooling curves, the structure functions, the thermal time constant distribution
and the Nyquist plot of the thermal impedance. The experiments carried out
demonstrated the influence of the contact resistance and the position of the
entire cooling assembly on the obtained results.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Diagnostic Application for Development of Custom ATCA Carrier Board for LLRF
The Advanced Telecommunications Computing Architecture (ATCA) standard describes a powerful and efficient platform. With multiple integrated solutions like redundancies and intelligent control mechanisms this technology is characterized with reliability estimated at the level of 99.99999 percent. These features make the standard perfect for use in projects like the Free Electron Laser in Hamburg (FLASH) and the X-ray Free Electron Laser (X-FEL) in order to help them meet the requirements of high availability and reliability. The ATCA standard incorporates advanced control systems defined in the Intelligent Platform Management Interface (IPMI) specification as one of the key elements. The entire ATCA implementation retains its functionality as long as the IPMI remains operational. The complexity level of the application increases, which results in preparing it to run and debugging being more difficult to perform. At the same time, only scrupulous elimination of any kind of possible deficiencies can enable the ATCA implementation to offer the desired level of reliability. Thus, diagnostics become crucial, which creates a need for additional tools performing these tasks during the preparations of both hardware and software for the ATCA application. The paper presents application aiding in development of the prototype Carrier Board by enabling the user of external PC station to perform diagnostic and control activities over the Board. It helps in examining all its components at the stage of running the Board, as well as in further operation analysis
Data acquisition system for quality tests of the ATLAS muon endcap trigger chambers
The ATLAS Collaboration is building a general-purpose pp detector which is designed to exploit the full discovery potential of the high energy proton-proton interaction Large Hadron Collider (LHC) at Cern. The LHC offers a large range of physics opportunities, among which the origin of mass at the electroweak scale is a major focus of interest of ATLAS. The Thin Gap Chambers (TGCs) are detectors designed to detect the high transverse momentum muons in the endcap of the ATLAS detector. The short response time of the TGCs makes it an ideal trigger system for selecting interesting events in the highly packed environment of the LHC accelerator. The subject of this paper is the design and operation of the data acquisition system, which serves to automatize the procedure of the performance of the TGC detector, before are to be installed in the ATLAS experiment. (3 refs)
The Predictive Value of PITX2 DNA Methylation for High-Risk Breast Cancer Therapy: Current Guidelines, Medical Needs, and Challenges
High-risk breast cancer comprises distinct tumor entities such as triple-negative breast cancer (TNBC) which is characterized by lack of estrogen (ER) and progesterone (PR) and the HER2 receptor and breast malignancies which have spread to more than three lymph nodes. For such patients, current (inter)national guidelines recommend anthracycline-based chemotherapy as the standard of care, but not all patients do equally benefit from such a chemotherapy. To further improve therapy decision-making, predictive biomarkers are of high, so far unmet, medical need. In this respect, predictive biomarkers would permit patient selection for a particular kind of chemotherapy and, by this, guide physicians to optimize the treatment plan for each patient individually. Besides DNA mutations, DNA methylation as a patient selection marker has received increasing clinical attention. For instance, significant evidence has accumulated that methylation of the PITX2 (paired-like homeodomain transcription factor 2) gene might serve as a novel predictive and prognostic biomarker, for a variety of cancer diseases. This review highlights the current understanding of treatment modalities of high-risk breast cancer patients with a focus on recommended treatment options, with special attention on the future clinical application of PITX2 as a predictive biomarker to personalize breast cancer management
Maturation, Peer Context, and Indigenous Girls\u27 Early-Onset Substance Use
This paper examines a biosocial model of the impact of puberty on Indigenous girls\u27 early-onset substance use by considering the potential mediating role of peer context (i.e. mixed-sex peer groups and substance use prototypes) on the puberty and substance use relationship. Data include responses from 360 girls of a common Indigenous cultural group residing on reservations/reserves in the upper Midwest and Canada. Results of structural equation modeling revealed that the statistically significant relationship between girls\u27 pubertal development and early-onset substance use was mediated by both mixed-sex/romantic peer groups and favorable social definitions of substance use. Implications for substance use prevention work include addressing the multiple and overlapping effects of peer influence from culturally-relevant perspectives
Ecto-5’-nucleotidase: Structure function relationships
Ecto-5’-nucleotidase (ecto-5’-NT) is attached via a GPI anchor to the extracellular membrane, where it hydrolyses AMP to adenosine and phosphate. Related 5’-nucleotidases exist in bacteria, where they are exported into the periplasmic space. X-ray structures of the 5’-nucleotidase from E. coli showed that the enzyme consists of two domains. The N-terminal domain coordinates two catalytic divalent metal ions, whereas the C-terminal domain provides the substrate specificity pocket for the nucleotides. Thus, the substrate binds at the interface of the two domains. Here, the currently available structural information on ecto-5’NT is reviewed in relation to the catalytic properties and enzyme function
Phase II study and biomarker analysis of cetuximab combined with modified FOLFOX6 in advanced gastric cancer
This prospective study was conducted with the Korean Cancer Study Group to evaluate the efficacy and safety of cetuximab combined with modified FOLFOX6 (mFOLFOX6) as first-line treatment in recurrent or metastatic gastric cancer and to identify potential predictive biomarkers. Patients received cetuximab 400 mg m−2 at week 1 and 250 mg m−2 weekly thereafter until disease progression. Oxaliplatin (100 mg m−2) and leucovorin (100 mg m−2) were administered as a 2-h infusion followed by a 46-h continuous infusion of 5-fluorouracil (2400 mg m−2) every 2 weeks for a maximum of 12 cycles. Biomarkers potentially associated with efficacy were analysed. Among 38 evaluable patients, confirmed response rate (RR) was 50.0% (95% CI 34.1–65.9). Median time-to-progression (TTP) was 5.5 months (95% CI 4.5–6.5) and overall survival (OS) 9.9 months. Eleven patients having tumour EGFR expression by immunohistochemistry with low serum EGF and TGF-α levels showed a 100% RR compared to 37.0% in the remaining 27 patients (P<0.001). Moreover, ligand level increased when disease progressed in seven out of eight patients with EGFR expression and low baseline ligand level. No patient exhibited EGFR amplification or K-ras mutations. Gastric cancer patients with EGFR expression and low ligand levels had better outcomes with cetuximab/mFOLFOX6 treatment
Clinical Validation of PITX2 DNA Methylation to Predict Outcome in High-Risk Breast Cancer Patients Treated with Anthracycline-Based Chemotherapy
Background: Breast cancer patients at high risk for recurrence are treated with anthracycline-based chemotherapy, but not all patients do equally benefit from such a regimen. To further improve therapy decision-making, biomarkers predicting outcome are of high unmet medical need. Methods: The percent DNA methylation ratio (PMR) of the promoter gene coding for the Paired-like homeodomain transcription factor 2 (PITX2) was determined by a validated methylation-specific real-time polymerase chain reaction (PCR) test. The multicenter study was conducted in routinely collected archived formalin-fixed paraffin-embedded (FFPE) tissue from 205 lymph node-positive breast cancer patients treated with adjuvant anthracycline-based chemotherapy. Results: The cut-off for the PITX2 methylation status (PMR = 12) was confirmed in a randomly selected cohort (n = 60) and validated (n = 145) prospectively with disease-free survival (DFS) at the 10-year follow-up. DFS was significantly different between the PMR ≤ 12 versus the PMR > 12 group with a hazard ratio (HR) of 2.74 (p < 0.001) in the validation cohort and also for the patient subgroup treated additionally with endocrine therapy (HR 2.47; p = 0.001). Conclusions: Early-stage lymph node-positive breast cancer patients with low PITX2 methylation do benefit from adjuvant anthracycline-based chemotherapy. Patients with a high PITX2 DNA methylation ratio, approximately 30%, show poor outcome and should thus be considered for alternative chemotherapy regimens
Clinical performance of an analytically validated assay in comparison to microarray technology to assess PITX2 DNA-methylation in breast cancer
Significant evidence has accumulated that DNA-methylation of the paired-like homeodomain transcription factor 2 (PITX2) gene can serve as a prognostic and predictive biomarker in breast cancer. PITX2 DNA-methylation data have been obtained so far from microarray and polymerase chain reaction (PCR)-based research tests. The availability of an analytically validated in vitro methylation-specific real-time PCR assay format (therascreen PITX2 RGQ PCR assay) intended for the determination of the percent methylation ratio (PMR) in the (PITX2) promoter 2 prompted us to investigate whether the clinical performance of these different assay systems generate comparable clinical outcome data. Mathematically converted microarray data of a previous breast cancer study (n = 204) into PMR values leads to a PITX2 cut-off value at PMR 14.73. Recalculation of the data to experimentally equivalent PMRs with the PCR PITX2 assay leads to a cut-off value at PMR 12 with the highest statistical significance. This cut-off predicts outcome of high-risk breast cancer patients to adjuvant anthracycline-based chemotherapy (n = 204; Hazard Ratio 2.48; p < 0.001) comparable to microarray generated results (n = 204; Hazard ratio 2.32; p < 0.0001). The therascreen PITX2 RGQ PCR assay is an analytically validated test with high reliability and robustness and predicts outcome of high-risk breast cancer patients to anthracycline-based chemotherapy
- …