74 research outputs found

    River Bed Form in a Granitic Mountainous Catchment : A Case of the Source Area in Kurose River, Hiroshima Prefecture

    Get PDF
    In order to clarify spatial variations in a river bed form in a granitic mountainous catchment, we surveyed topographically a steep river on a source area of Kurose River in which the debris flow occurred in 1999. Firstly, we found that the spatial variation in erosion-deposition process on the steep river. Both of the lower stream and upper one held much sediments with large gravels (φ>2m). On the other hand, the middle stream exposed mainly the bedrock. Secondary, we confirmed spatial distribution of river falls. The height of river fall on the upper stream rose with the increase of river gradient. On the contray, the frequency of falls was constant in spite of inclination

    Generating observation guided ensembles for data assimilation with denoising diffusion probabilistic model

    Full text link
    This paper presents an ensemble data assimilation method using the pseudo ensembles generated by denoising diffusion probabilistic model. Since the model is trained against noisy and sparse observation data, this model can produce divergent ensembles close to observations. Thanks to the variance in generated ensembles, our proposed method displays better performance than the well-established ensemble data assimilation method when the simulation model is imperfect

    Continuous data assimilation of large eddy simulation by lattice Boltzmann method and local ensemble transform Kalman filter (LBM-LETKF)

    Full text link
    We investigate the applicability of the data assimilation (DA) to large eddy simulations (LESs) based on the lattice Boltzmann method (LBM). We carry out the observing system simulation experiment of a two-dimensional (2D) forced isotropic turbulence, and examine the DA accuracy of the nudging and the local ensemble transform Kalman filter (LETKF) with spatially sparse and noisy observation data of flow fields. The advantage of the LETKF is that it does not require computing spatial interpolation and/or an inverse problem between the macroscopic variables (the density and the pressure) and the velocity distribution function of the LBM, while the nudging introduces additional models for them. The numerical experiments with 256×256256\times256 grids and 10%10\% observation noise in the velocity showed that the root mean square error of the velocity in the LETKF with 8×88\times 8 observation points (0.1%\sim 0.1\% of the total grids) and 64 ensemble members becomes smaller than the observation noise, while the nudging requires an order of magnitude larger number of observation points to achieve the same accuracy. Another advantage of the LETKF is that it well keeps the amplitude of the energy spectrum, while only the phase error becomes larger with more sparse observation. We also see that a lack of observation data in the LETKF produces a spurious energy injection in high wavenumber regimes, leading to numerical instability. Such numerical instability is known as the catastrophic filter divergence problem, which can be suppressed by increasing the number of ensemble members. From these results, it was shown that the LETKF enables robust and accurate DA for the 2D LBM with sparse and noisy observation data.Comment: 27 pages, 14 figure

    NO_3^--N Flux of Streams in the Setouchi Region : Effects of Fruit-Farmland Area, Water Reservoir, and Alluvial Fan

    Get PDF
    To confirm the effects of fruit-farmland area, water reservoir, and alluvial fan on nitrate load in short streams, we measured runoff and collected water samples at five or eight sites in each of four streams, Seto Inland Sea catchment. Nitrate load of the streams increased with increasing ratio of fruit-farmland area. At a downstream site of water reservoir, nitrate concentration showed a slight decrease. On the area widely domi- nated by alluvial fan, it assumed that groundwater pollution by nitrate-nitrogen is accelerated with groundwater recharge of stream water. It is necessary for conservation of water resources to consider function of these effects as well as river-groundwater mixing

    The Globular Cluster System of the Virgo Giant Elliptical Galaxy NGC 4636: I. Subaru/FOCAS Spectroscopy and Database

    Full text link
    We present a spectroscopic study of the globular clusters (GCs) in the giant elliptical galaxy NGC 4636 in the Virgo cluster. We selected target GC candidates using the Washington photometry derived from the deep CCD images taken at the KPNO 4m. Then we obtained the spectra of 164 target objects in the field of NGC 4636 using the Multi-Object Spectroscopy (MOS) mode of Faint Object Camera and Spectrograph (FOCAS) on the SUBARU 8.2m Telescope. We have measured the velocities for 122 objects: 105 GCs in NGC 4636, the nucleus of NGC 4636, 11 foreground stars, 2 background galaxies, and 3 probable intracluster GCs in the Virgo cluster. The GCs in NGC 4636 are located in the projected galactocentric radius within 10arcmin (corresponding to 43 kpc). The measured velocities for the GCs range from 300km/s to 1600km/s, with a mean value of 932_{-22}^{+25} km/s, which is in good agreement with the velocity for the nucleus of NGC 4636, 928\pm 45 km/s. The velocity dispersion of the GCs in NGC 4636 is derived to be 231_{-17}^{+15} km/s and the velocity dispersion of the blue GCs is slightly larger than that of the red GCs. Combining our results with data in the literature, we produce a master catalog of radial velocities for 238 GCs in NGC 4636. The velocity dispersion of the GCs in the master catalog is found to be 225_{-9}^{+12} km/s for the entire sample, 251_{-12}^{+18} km/s for 108 blue GCs, and 205_{-13}^{+11} km/s for 130 red GCs.Comment: 27 pages, 9 figues, Accepted by Ap

    A wide area survey for high-redshift massive galaxies. I. Number counts and clustering of BzKs and EROs

    Get PDF
    We have combined deep BRIz' imaging over 2x940 arcmin^2 fields obtained with the Suprime-Cam on the Subaru telescope with JKs imaging with the SOFI camera at the New Technology Telescope to search for high-redshift massive galaxies. K-band selected galaxies have been identified over an area of ~920 arcmin^2 to K_Vega=19.2, of which 320 arcmin^2 are complete to K_Vega=20. The BzK selection technique was used to obtain complete samples of ~500 candidate massive star-forming galaxies (sBzKs) and ~160 candidate massive, passively-evolving galaxies (pBzKs), both at 1.4 5 criterion we also identified ~850 extremely red objects (EROs). The surface density of sBzKs and pBzKs is found to 1.20+/-0.05 arcmin^{-2} and 0.38+/-0.03 arcmin^{-2}, respectively. Both sBzKs and pBzKs are strongly clustered, at a level at least comparable to that of EROs, with pBzKs appearing more clustered than sBzKs. We estimate the reddening, star formation rates (SFRs) and stellar masses (M_*) of the sBzKs, confirming that to K_Vega~20 median values are M_*~10^{11}M_sun, SFR 190M_sun yr^{-1}, and E(B-V)~0.44. The most massive sBzKs are also the most actively star-forming, an effect which can be seen as a manifestation of downsizing at early epochs. The space density of massive pBzKs at z~1.4-2 is 20%+/-7% that of similarly massive early-type galaxies at z~0, and similar to that of sBzKs of the same mass. We argue that star formation quenching in these sBzKs will result in nearly doubling the space density of massive early-type galaxies, thus matching their local density

    The Globular Cluster System of the Virgo Giant Elliptical Galaxy NGC 4636: II. Kinematics of the Globular Cluster System

    Full text link
    We present a kinematic analysis of the globular cluster(GC) system in the giant elliptical galaxy (gE) NGC 4636 in the Virgo cluster. Using the photometric and spectroscopic database of 238 GCs, we have investigated the kinematics of the GC system. The NGC 4636 GC system shows weak overall rotation, which is dominated by the red GCs. However, both the blue GCs and red GCs show some rotation in the inner region at R<4.3'. The velocity dispersion for all the GCs is derived to be sigma_p = 225{+12-9} km/s. The velocity dispersion for the blue GCs (sig=251 km/s) is slightly larger than that for the red GCs (sig=205 km/s). The velocity dispersions for the blue GCs about the mean velocity and about the best fit rotation curve have a significant variation depending on the galactocentric radius. Comparison of observed stellar and GC velocity dispersion profiles with the velocity dispersion profiles calculated from the stellar mass profile shows that the mass-to-light ratio should increase as the galactocentric distance increases, indicating the existence of an extended dark matter halo. From the comparison of the observed GC velocity dispersion profiles and the velocity dispersion profiles calculated for the X-ray mass profiles in the literature, we find that the orbit of the GC system is tangential, and that the orbit of the red GCs is slightly more tangential than that of the blue GCs. We compare the GC kinematics of NGC 4636 with those of other six gEs, finding that the kinematic properties of the GCs are diverse among gEs. We find several correlations between the kinematics of the GCs and the global parameters of their host galaxies. We discuss the implication of the results for the formation models of the GC system in gEs, and suggest a mixture scenario for the origin of the GCs in gEs.Comment: 52 pages, 18 figues, Accepted by Ap

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016)

    Get PDF
    Background and purposeThe Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in February 2017 and published in the Journal of JSICM, [2017; Volume 24 (supplement 2)] https://doi.org/10.3918/jsicm.24S0001 and Journal of Japanese Association for Acute Medicine [2017; Volume 28, (supplement 1)] http://onlinelibrary.wiley.com/doi/10.1002/jja2.2017.28.issue-S1/issuetoc.This abridged English edition of the J-SSCG 2016 was produced with permission from the Japanese Association of Acute Medicine and the Japanese Society for Intensive Care Medicine.MethodsMembers of the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine were selected and organized into 19 committee members and 52 working group members. The guidelines were prepared in accordance with the Medical Information Network Distribution Service (Minds) creation procedures. The Academic Guidelines Promotion Team was organized to oversee and provide academic support to the respective activities allocated to each Guideline Creation Team. To improve quality assurance and workflow transparency, a mutual peer review system was established, and discussions within each team were open to the public. Public comments were collected once after the initial formulation of a clinical question (CQ) and twice during the review of the final draft. Recommendations were determined to have been adopted after obtaining support from a two-thirds (> 66.6%) majority vote of each of the 19 committee members.ResultsA total of 87 CQs were selected among 19 clinical areas, including pediatric topics and several other important areas not covered in the first edition of the Japanese guidelines (J-SSCG 2012). The approval rate obtained through committee voting, in addition to ratings of the strengths of the recommendation, and its supporting evidence were also added to each recommendation statement. We conducted meta-analyses for 29 CQs. Thirty-seven CQs contained recommendations in the form of an expert consensus due to insufficient evidence. No recommendations were provided for five CQs.ConclusionsBased on the evidence gathered, we were able to formulate Japanese-specific clinical practice guidelines that are tailored to the Japanese context in a highly transparent manner. These guidelines can easily be used not only by specialists, but also by non-specialists, general clinicians, nurses, pharmacists, clinical engineers, and other healthcare professionals

    The Hyper Suprime-Cam SSP survey: Overview and survey design

    Get PDF
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2-m Subaru telescope on the summit of Mauna Kea in Hawaii. A team of scientists from Japan, Taiwan, and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey

    A fully conservative high-order upwind multi-moment method using moments in both upwind and downwind cells

    No full text
    We propose a fully conservative high-order upwind multi-moment method for the conservation equation. The proposed method is based on a third-order polynomial interpolation function and semi-Lagrangian formulation, and is a variant of the CIP-CSL3 (constrained interpolation profile–conservative semi-Lagrangian scheme with third-order polynomial function) method. The third-order interpolation function is constructed based on three constraints in the upwind cell (two boundary values and a cell average) and a constraint in the downwind cell (a cell center value). The proposed method shows 4th-order accuracy in a benchmark problem (sine wave propagation). We also propose a less oscillatory formulation of the proposed method. The less oscillatory formulation can minimize numerical oscillations. These methods were validated through scalar transport problems, and compressible flow problems (shock tube and 2D explosion problems)
    corecore