67 research outputs found

    A comparative assessment of caries risk using cariogram among smokers and smokeless tobacco users in india – a cross-sectional study

    Get PDF
    Background: A dearth of literature exists concerning utilization of the unique cariogram model for caries risk assessment in tobacco users.Objective: To assess & compare caries risk among smokers & smokeless tobacco users using Cariogram model. Methods: A descriptive cross sectional study was conducted among smokers and smokeless tobacco users of Udaipur for 3 months. Caries risk assessment was done by employing a survey proforma based on the Cariogram model. Statistical analysis included descriptive statistics, Chi-square test followed by Marascuilo procedure and Stepwise multiple linear regression with 95% confidence interval and 5% significance level. Results: Majority of the smokers (56%) portrayed high caries risk (less chance to avoid new caries) followed by smokeless Tobacco users (34%). Only 40% smokeless tobacco users had relatively high chances (>60%) of avoiding future new caries. The susceptibility sector of the cariogram model contributed primarily to caries risk in the study population. Conclusion: The study findings from the different cariogram elements converged to indicate that smokers were at maximum caries risk, followed by smokeless tobacco users and therefore Cariogram model could be a useful tool to represent caries risk among smokers and smokeless tobacco users. Keywords: Smokers, cariogram, smokeless tobacco, dental caries, sugar

    Data-driven wildfire risk prediction in northern california

    Get PDF
    Over the years, rampant wildfires have plagued the state of California, creating economic and environmental loss. In 2018, wildfires cost nearly 800 million dollars in economic loss and claimed more than 100 lives in California. Over 1.6 million acres of land has burned and caused large sums of environmental damage. Although, recently, researchers have introduced machine learning models and algorithms in predicting the wildfire risks, these results focused on special perspectives and were restricted to a limited number of data parameters. In this paper, we have proposed two data-driven machine learning approaches based on random forest models to predict the wildfire risk at areas near Monticello and Winters, California. This study demonstrated how the models were developed and applied with comprehensive data parameters such as powerlines, terrain, and vegetation in different perspectives that improved the spatial and temporal accuracy in predicting the risk of wildfire including fire ignition. The combined model uses the spatial and the temporal parameters as a single combined dataset to train and predict the fire risk, whereas the ensemble model was fed separate parameters that were later stacked to work as a single model. Our experiment shows that the combined model produced better results compared to the ensemble of random forest models on separate spatial data in terms of accuracy. The models were validated with Receiver Operating Characteristic (ROC) curves, learning curves, and evaluation metrics such as: accuracy, confusion matrices, and classification report. The study results showed and achieved cutting-edge accuracy of 92% in predicting the wildfire risks, including ignition by utilizing the regional spatial and temporal data along with standard data parameters in Northern California

    A Modified Collagen Dressing Induces Transition of Inflammatory to Reparative Phenotype of Wound Macrophages

    Get PDF
    Collagen containing wound-care dressings are extensively used. However, the mechanism of action of these dressings remain unclear. Earlier studies utilizing a modified collagen gel (MCG) dressing demonstrated improved vascularization of ischemic wounds and better healing outcomes. Wound macrophages are pivotal in facilitating wound angiogenesis and timely healing. The current study was designed to investigate the effect of MCG on wound macrophage phenotype and function. MCG augmented recruitment of macrophage at the wound-site, attenuated pro-inflammatory and promoted anti-inflammatory macrophage polarization. Additionally, MCG increased anti-inflammatory IL-10, IL-4 and pro-angiogenic VEGF production, indicating a direct role of MCG in resolving wound inflammation and improving angiogenesis. At the wound-site, impairment in clearance of apoptotic cell bioburden enables chronic inflammation. Engulfment of apoptotic cells by macrophages (efferocytosis) resolves inflammation via a miR-21-PDCD4-IL-10 pathway. MCG-treated wound macrophages exhibited a significantly bolstered efferocytosis index. Such favorable outcome significantly induced miR-21 expression. MCG-mediated IL-10 production was dampened under conditions of miR-21 knockdown pointing towards miR-21 as a causative factor. Pharmacological inhibition of JNK attenuated IL-10 production by MCG, implicating miR-21-JNK pathway in MCG-mediated IL-10 production by macrophages. This work provides direct evidence demonstrating that a collagen-based wound-care dressing may influence wound macrophage function and therefore modify wound inflammation outcomes

    A comparative assessment of caries risk using cariogram among smokers and smokeless tobacco users in india \u2013 a cross-sectional study

    Get PDF
    Background: A dearth of literature exists concerning utilization of the unique cariogram model for caries risk assessment in tobacco users. Objective: To assess & compare caries risk among smokers & smokeless tobacco users using Cariogram model. Methods: A descriptive cross sectional study was conducted among smokers and smokeless tobacco users of Udaipur for 3 months. Caries risk assessment was done by employing a survey proforma based on the Cariogram model. Statistical analysis included descriptive statistics, Chi-square test followed by Marascuilo procedure and Stepwise multiple linear regression with 95% confidence interval and 5% significance level. Results: Majority of the smokers (56%) portrayed high caries risk (less chance to avoid new caries) followed by smokeless Tobacco users (34%). Only 40% smokeless tobacco users had relatively high chances (>60%) of avoiding future new caries. The susceptibility sector of the cariogram model contributed primarily to caries risk in the study population. Conclusion: The study findings from the different cariogram elements converged to indicate that smokers were at maximum caries risk, followed by smokeless tobacco users and therefore Cariogram model could be a useful tool to represent caries risk among smokers and smokeless tobacco users

    Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen

    Get PDF
    Objective: The objective of this work was to causatively link biofilm properties of bacterial infection to specific pathogenic mechanisms in wound healing. Background: Staphylococcus aureus is one of the four most prevalent bacterial species identified in chronic wounds. Causatively linking wound pathology to biofilm properties of bacterial infection is challenging. Thus, isogenic mutant stains of S. aureus with varying degree of biofilm formation ability was studied in an established preclinical porcine model of wound biofilm infection. Methods: Isogenic mutant strains of S. aureus with varying degree (Ξ”rexB > USA300 > Ξ”sarA) of biofilm-forming ability were used to infect full-thickness porcine cutaneous wounds. Results: Compared with that of Ξ”sarA infection, wound biofilm burden was significantly higher in response to Ξ”rexB or USA300 infection. Biofilm infection caused degradation of cutaneous collagen, specifically collagen 1 (Col1), with Ξ”rexB being most pathogenic in that regard. Biofilm infection of the wound repressed wound-edge miR-143 causing upregulation of its downstream target gene matrix metalloproteinase-2. Pathogenic rise of collagenolytic matrix metalloproteinase-2 in biofilm-infected wound-edge tissue sharply decreased collagen 1/collagen 3 ratio compromising the biomechanical properties of the repaired skin. Tensile strength of the biofilm infected skin was compromised supporting the notion that healed wounds with a history of biofilm infection are likely to recur. Conclusion: This study provides maiden evidence that chronic S. aureus biofilm infection in wounds results in impaired granulation tissue collagen leading to compromised wound tissue biomechanics. Clinically, such compromise in tissue repair is likely to increase wound recidivism

    Entrapment of Viral Capsids in Nuclear PML Cages Is an Intrinsic Antiviral Host Defense against Varicella-Zoster Virus

    Get PDF
    The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins

    In situ carbon deposition in polyetherimide/SAPO-34 mixed matrix membrane for efficient CO2/CH4 separation

    No full text
    A simple method of pore modification complied with defect removal polymer zeolite mixed matrix membrane was developed by in situ carbon (C) deposition. The C deposition was achieved by the controlled decomposition of polymer matrix by heat treatment. In this study, polyetherimide/silicoaluminophosphate-34 mixed matrix membrane (MMM) was fabricated on clay-alumina support tube, followed by carbonization of the polymer matrix for gas separation application. MMM without heat treatment were also synthesized for comparison by conventional method. The membranes were characterized by X-ray diffraction, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. Due to carbonization, in situ C nanoparticles were deposited in to the interfacial pores, and filler particles were oriented in preferable direction. The presence of CO, CN, and graphitic carbon in the matrix, may be an indication of partial carbonization and restoration of adherence of polymer with substrate. The separation factor for CO2/CH4 achieved 39.15 with a permeance value of 23.01 x 10(-8)mol/(m(2)sPa) for CO2 at 30 degrees C and 200 kPa feed pressure. For the first time, this work shows an improvement toward permeability of MMM by simple carbonization of polymer matrix with commendable values as compare to the reported literature. (c) 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45508

    Degrons at the C Terminus of the Pathogenic but Not the Nonpathogenic Hantavirus G1 Tail Direct Proteasomal Degradation

    No full text
    Pathogenic hantaviruses cause two human diseases: hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). The hantavirus G1 protein contains a long, 142-amino-acid cytoplasmic tail, which in NY-1 virus (NY-1V) is ubiquitinated and proteasomally degraded (E. Geimonen, I. Fernandez, I. N. Gavrilovskaya, and E. R. Mackow, J. Virol. 77: 10760-10768, 2003). Here we report that the G1 cytoplasmic tails of pathogenic Andes (HPS) and Hantaan (HFRS) viruses are also degraded by the proteasome and that, in contrast, the G1 tail of nonpathogenic Prospect Hill virus (PHV) is stable and not proteasomally degraded. We determined that the signals which direct NY-1V G1 tail degradation are present in a hydrophobic region within the C-terminal 30 residues of the protein. In contrast to that of PHV, the NY-1V hydrophobic domain directs the proteasomal degradation of green fluorescent protein and constitutes an autonomous degradation signal, or β€œdegron,” within the NY-1V G1 tail. Replacing 4 noncontiguous residues of the NY-1V G1 tail with residues present in the stable PHV G1 tail resulted in a NY-1V G1 tail that was not degraded by the proteasome. In contrast, changing a different but overlapping set of 4 PHV residues to corresponding NY-1V residues directed proteasomal degradation of the PHV G1 tail. The G1 tails of pathogenic, but not nonpathogenic, hantaviruses contain intervening hydrophilic residues within the C-terminal hydrophobic domain, and amino acid substitutions that alter the stability or degradation of NY-1V or PHV G1 tails result from removing or adding intervening hydrophilic residues. Our results identify residues that selectively direct the proteasomal degradation of pathogenic hantavirus G1 tails. Although a role for the proteasomal degradation of the G1 tail in HPS or HFRS is unclear, these findings link G1 tail degradation to viral pathogenesis and suggest that degrons within hantavirus G1 tails are potential virulence determinants
    • …
    corecore