72 research outputs found

    Association of the infant gut microbiome with early childhood neurodevelopmental outcomes: An ancillary study to the VDAART randomized clinical trial

    Get PDF
    Importance: In animal models, the early life gut microbiome influences later neurodevelopment. Corresponding data in human populations are lacking. Objective: To study associations between the gut microbiome in infants and development at preschool age measured by the Ages and Stages Questionnaire, third edition (ASQ-3). Design, Setting, and Participants: This ancillary cohort study of the Vitamin D Antenatal Asthma Reduction Trial (VDAART) used data from 715 participants who had development assessed at 3 years of age by the ASQ-3, which included scores in 5 domains (gross motor skills, fine motor skills, problem solving, communication, and personal and social skills). A total of 309 stool samples were collected from infants aged 3 to 6 months for microbiome analysis using 16S rRNA gene sequencing. Exposures: Infant gut microbiome. Main Outcomes and Measures: Continuous ASQ-3 scores and typical vs potential delay in the 5 developmental domains. Factor scores for bacterial coabundance groups were used as predictors in regression models of continuous ASQ-3 scores. Logistic regression was used to examine bacterial coabundance scores and odds of scoring below the threshold for typical development. Multivariate analysis examined the abundance of individual taxa and ASQ-3 scores. Results: The 309 participants (170 [55.0%] male) with ASQ-3 scores and stool samples were ethnically diverse (136 [44.0%] black, 41 [13.3%] Hispanic, 86 [27.8%] white, and 46 [14.9%] other race/ethnicity); the mean (SD) age at ASQ-3 assessment was 3.0 (0.07) years. Coabundance scores dominated by Clostridiales (Lachnospiraceae genera and other, unclassified Clostridiales taxa) were associated with poorer ASQ-3 communication (β, -1.12; 95% CI, -2.23 to -0.01; P = .05) and personal and social (β, -1.44; 95% CI, -2.47 to -0.40; P = .01) scores and with increased odds of potential delay for communication (odds ratio [OR], 1.69; 95% CI, 1.06 to 2.68) and personal and social skills (OR, 1.96; 95% CI, 1.22 to 3.15) per unit increase in coabundance score. The Bacteroides-dominated coabundance grouping was associated with poorer fine motor scores (β, -2.42; 95% CI, -4.29 to -0.55; P = .01) and with increased odds of potential delay for fine motor skills (OR, 1.52; 95% CI, 1.07 to 2.16) per unit increase in coabundance score. Multivariate analysis detected similar family-level and order-level associations. Conclusions and Relevance: These findings suggest an association between infant gut microbiome composition and communication, personal and social, and fine motor skills at age 3 years. The majority of associations were driven by taxa within the order Clostridiales

    ATM Limits Incorrect End Utilization during Non-Homologous End Joining of Multiple Chromosome Breaks

    Get PDF
    Chromosome rearrangements can form when incorrect ends are matched during end joining (EJ) repair of multiple chromosomal double-strand breaks (DSBs). We tested whether the ATM kinase limits chromosome rearrangements via suppressing incorrect end utilization during EJ repair of multiple DSBs. For this, we developed a system for monitoring EJ of two tandem DSBs that can be repaired using correct ends (Proximal-EJ) or incorrect ends (Distal-EJ, which causes loss of the DNA between the DSBs). In this system, two DSBs are induced in a chromosomal reporter by the meganuclease I-SceI. These DSBs are processed into non-cohesive ends by the exonuclease Trex2, which leads to the formation of I-SceI–resistant EJ products during both Proximal-EJ and Distal-EJ. Using this method, we find that genetic or chemical disruption of ATM causes a substantial increase in Distal-EJ, but not Proximal-EJ. We also find that the increase in Distal-EJ caused by ATM disruption is dependent on classical non-homologous end joining (c-NHEJ) factors, specifically DNA-PKcs, Xrcc4, and XLF. We present evidence that Nbs1-deficiency also causes elevated Distal-EJ, but not Proximal-EJ, to a similar degree as ATM-deficiency. In addition, to evaluate the roles of these factors on end processing, we examined Distal-EJ repair junctions. We found that ATM and Xrcc4 limit the length of deletions, whereas Nbs1 and DNA-PKcs promote short deletions. Thus, the regulation of end processing appears distinct from that of end utilization. In summary, we suggest that ATM is important to limit incorrect end utilization during c-NHEJ

    Chromatin Structure Regulates Gene Conversion

    Get PDF
    Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vλ pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205), expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vλ donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vλ array, and altered the outcome of Vλ diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences

    Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    Get PDF
    The human parasite Trichomonas vaginalis causes trichomoniasis, the world's most common non-viral sexually transmitted infection. Research on T. vaginalis genetic diversity has been limited by a lack of appropriate genotyping tools. To address this problem, we recently published a panel of T. vaginalis-specific genetic markers; here we use these markers to genotype isolates collected from ten regions around the globe. We detect high levels of genetic diversity, infer a two-type population structure, identify clinically relevant differences between the two types, and uncover evidence of genetic exchange in what was believed to be a clonal organism. Together, these results greatly improve our understanding of the population genetics of T. vaginalis and provide insights into the possibility of genetic exchange in the parasite, with implications for the epidemiology and control of the disease. By taking into account the existence of different types and their unique characteristics, we can improve understanding of the wide range of symptoms that patients manifest and better implement appropriate drug treatment. In addition, by recognizing the possibility of genetic exchange, we are more equipped to address the growing concern of drug resistance and the mechanisms by which it may spread within parasite populations

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value OBFC1indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Round & round the looking glass

    No full text
    From Anna Gibbs, Rosi Braidotti, Jane Weinstock and Nancy Huston. 'Round & Round the Looking Glass: Responses to Elaine Marks and Isabelle de Courtivron', New French Feminisms. Hecate 6.2 (1980): 23-4
    • …
    corecore