15 research outputs found

    West African Summer Monsoon Precipitation Variability as Represented by Reanalysis Datasets

    Get PDF
    Focusing on West Africa, a region riddled with in situ data scarcity, we evaluate the summer monsoon monthly rainfall characteristics of five global reanalysis datasets: ERA5, ERA-Interim, JRA-55, MERRA2, and NCEP-R2. Their performance in reproducing the West African monsoon (WAM) climatology, interannual variability, and long-term trends for the main monsoon months are compared to gauge-only and satellite products. We further examine their ability to reproduce teleconnections between sea surface temperatures and monsoon rainfall. All reanalyses are able to represent the average rainfall patterns and seasonal cycle; however, regional biases can be marked. ERA5, ERA-Interim, and NCEP-R2 underestimate rainfall over areas of peak rainfall, with ERA5 showing the strongest underestimation, particularly over the Guinea Highlands. The meridional northward extent of the monsoon rainband is well captured by JRA-55 and MERRA2 but is too narrow in ERA-Interim, for which rainfall stays close to the Guinea Coast. Differences in rainband displacement become particularly evident when comparing strong El Niño Southern Oscillation (ENSO) years, where all reanalyses except ERA-Interim reproduce wetter Sahelian conditions for La Niña, while overestimating dry conditions at the coast except for NCEP-R2. Precipitation trends are not coherent across reanalyses and magnitudes are generally overestimated compared to observations, with only JRA-55 and NCEP-R2 displaying the expected positive trend in the Sahel. ERA5 generally outperforms ERA-Interim, highlighting clear improvements over its predecessor. Ultimately, we find the strengths of reanalyses to strongly vary across the region

    Classification of large-scale environments that drive the formation of mesoscale convective systems over southern West Africa

    Get PDF
    Mesoscale convective systems (MCSs) are frequently observed over southern West Africa (SWA) throughout most of the year. These MCS events are the dominant rain-bearing systems, contributing over 50 % of annual rainfall over SWA. However, it has not yet been identified what variations in typical large-scale environments of the seasonal cycle of the West African monsoon may favour MCS occurrence in this region. Here, nine distinct synoptic states are identified and are further associated with being a synoptic-circulation type of either a dry, transition, or monsoon season using self-organizing maps (SOMs) with inputs from reanalysis data. We identified a pronounced annual cycle of MCS numbers with frequency peaks in April and October that can be associated with the start of rainfall during the major rainy season and the maximum rainfall for the minor rainy season across SWA, respectively. Comparing daily MCS frequencies, MCSs are most likely to develop during transition conditions featuring a northward-displaced moisture anomaly (2.8 MCSs per day), which can be linked to strengthened low-level westerlies. Considering that these transition conditions occur predominantly during the pre- and post-monsoon period, these patterns may in some cases be representative of monsoon onset conditions or a delayed monsoon retreat. On the other hand, under monsoon conditions, we observe weakened low-level south-westerlies during MCS days, which reduce moisture content over the Sahel but introduce more moisture over the coast. Finally, we find a majority of MCS-day synoptic states exhibiting positive zonal wind shear anomalies. Seasons with the strongest zonal wind shear anomalies are associated with the strongest low-level temperature anomalies to the north of SWA, highlighting that a warmer Sahel can promote MCS-favourable conditions in SWA. Overall, the SOM-identified synoptic states converge towards high-moisture and high-shear conditions on MCS days in SWA, where the frequency at which these conditions occur depends on the synoptic state

    Mapping Evapotranspiration of Agricultural Areas in Ghana

    No full text
    Climate change is having an adverse effect on the environment especially in sub-Sahara Africa, where capacity for natural resource management such as water is very low. The scope of the effect on land use types have to be estimated to inform proper remedy. A combined estimation of transpiration and evaporation from plants and soil is critical to determine annual water requirement for different land use. Evapotranspiration (ET) is a major component in the world hydrological cycle, and understanding its spatial dimensions is critical in evaluating the effects it has on regional land use. A measure of this component is challenging due to variation in rainfall and environmental changes. The mapping evapotranspiration with high resolution and internalized calibration (METRIC) method is employed to create evapotranspiration map for land use, using remotely sensed data by satellite, processed, and analyzed in ArcGIS. Normalized difference vegetation index (NDVI) was related to the availability of water for vegetation on different land use, and the results indicate a high evapotranspiration for vegetated land use with high NDVI than land use with low NDVI

    Spatiotemporal Changes in Temperature and Precipitation in West Africa. Part I: Analysis with the CMIP6 Historical Dataset

    No full text
    Climate variability and change constitute major challenges for Africa, especially West Africa (WA), where an important increase in extreme climate events has been noticed. Therefore, it appears essential to analyze characteristics and trends of some key climatological parameters. Thus, this study addressed spatiotemporal variabilities and trends in regard to temperature and precipitation extremes by using 21 models of the Coupled Model Intercomparison Project version 6 (CMIP6) and 24 extreme indices from the Expert Team on Climate Change Detection and Indices (ETCCDI). First, the CMIP6 variables were evaluated with observations (CHIRPS, CHIRTS, and CRU) of the period 1983–2014; then, the extreme indices from 1950 to 2014 were computed. The innovative trend analysis (ITA), Sen’s slope, and Mann–Kendall tests were utilized to track down trends in the computed extreme climate indices. Increasing trends were observed for the maxima of daily maximum temperature (TXX) and daily minimum temperature (TXN) as well as the maximum and minimum of the minimum temperature (TNX and TNN). This upward trend of daily maximum temperature (Tmax) and daily minimum temperature (Tmin) was enhanced with a significant increase in warm days/nights (TX90p/TN90p) and a significantly decreasing trend in cool days/nights (TX10p/TN10p). The precipitation was widely variable over WA, with more than 85% of the total annual water in the study domain collected during the monsoon period. An upward trend in consecutive dry days (CDD) and a downward trend in consecutive wet days (CWD) influenced the annual total precipitation on wet days (PRCPTOT). The results also depicted an upward trend in SDII and R30mm, which, additionally to the trends of CDD and CWD, could be responsible for localized flood-like situations along the coastal areas. The study identified the 1970s dryness as well as the slight recovery of the 1990s, which it indicated occurred in 1992 over West Africa

    The seasonal cycle of cloud radiative effects over Congo Basin based on CERES observation and comparison to CMIP6 models

    No full text
    This study investigates the seasonal variability of the cloud radiative effects (CREs) over Congo Basin (CB) using 15-year observations from Clouds and the Earth's Radiant Energy System (CERES) Energy Budget and Filled (EBAF) Ed4.1 level 3b dataset involving CERES and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board Terra and Aqua satellites. The relationships between CREs and cloud properties such as total cloud fraction (TCF), cloud top height (CTH), cloud top temperature (CTT) and cloud optical thickness (COT) are checked. An evaluation of Coupled Model Intercomparison Project (CMIP) Phase 6 in capturing the seasonal cycle of CREs as well as the magnitudes of the CREs along the seasonal cycle is also performed. This study shows a net cloud cooling effect of −8.4 W/m2 and − 43.9 W/m2 respectively at the top of the atmosphere (TOA) and at the surface, leading to a net warming effect of 35.67 W/m2 in the atmosphere. This value implies a large energy source over the Central Africa (CA) atmospheric column. The associated relationships between CREs and cloud properties show that the shortwave CRE is more sensitive to TCF and optical thickness whereas its longwave counterparts is more sensitive to CTH, CTT and COT at the TOA and in the atmosphere. All of the four CMIP6 models used in this study can capture the spatial pattern of CREs as well as their seasonal cycle but misrepresent intensity of CREs. Results also show that a better-simulated TCF considerably reduces the intensity of the annual mean underestimation in both longwave and shortwave CRE for some CMIP6 models, but not for models with overestimated shortwave CRE

    Spatiotemporal Changes in Temperature and Precipitation in West Africa. Part I: Analysis with the CMIP6 Historical Dataset

    No full text
    Climate variability and change constitute major challenges for Africa, especially West Africa (WA), where an important increase in extreme climate events has been noticed. Therefore, it appears essential to analyze characteristics and trends of some key climatological parameters. Thus, this study addressed spatiotemporal variabilities and trends in regard to temperature and precipitation extremes by using 21 models of the Coupled Model Intercomparison Project version 6 (CMIP6) and 24 extreme indices from the Expert Team on Climate Change Detection and Indices (ETCCDI). First, the CMIP6 variables were evaluated with observations (CHIRPS, CHIRTS, and CRU) of the period 1983–2014; then, the extreme indices from 1950 to 2014 were computed. The innovative trend analysis (ITA), Sen’s slope, and Mann–Kendall tests were utilized to track down trends in the computed extreme climate indices. Increasing trends were observed for the maxima of daily maximum temperature (TXX) and daily minimum temperature (TXN) as well as the maximum and minimum of the minimum temperature (TNX and TNN). This upward trend of daily maximum temperature (Tmax) and daily minimum temperature (Tmin) was enhanced with a significant increase in warm days/nights (TX90p/TN90p) and a significantly decreasing trend in cool days/nights (TX10p/TN10p). The precipitation was widely variable over WA, with more than 85% of the total annual water in the study domain collected during the monsoon period. An upward trend in consecutive dry days (CDD) and a downward trend in consecutive wet days (CWD) influenced the annual total precipitation on wet days (PRCPTOT). The results also depicted an upward trend in SDII and R30mm, which, additionally to the trends of CDD and CWD, could be responsible for localized flood-like situations along the coastal areas. The study identified the 1970s dryness as well as the slight recovery of the 1990s, which it indicated occurred in 1992 over West Africa

    Recent Trends in the Daily Rainfall Regime in Southern West Africa

    No full text
    Extreme climate events, either being linked to dry spells or extreme precipitation, are of major concern in Africa, a region in which the economy and population are highly vulnerable to climate hazards. However, recent trends in climate events are not often documented in this poorly surveyed continent. This study makes use of a large set of daily rain gauge data covering Southern West Africa (extending from 10° W to 10° E and from 4° N to 12° N) from 1950 to 2014. The evolution of the number and the intensity of daily rainfall events, especially the most extremes, were analyzed at the annual and seasonal scales. During the first rainy season (April–July), mean annual rainfall is observed to have a minor trend due to less frequent but more intense rainfall mainly along the coast of Southern West Africa (SWA) over the last two decades. The north–south seasonal changes exhibit an increase in mean annual rainfall over the last decade during the second rainy season (September–November) linked by both an increase in the frequency of occurrence of rainy days as well as an increase in the mean intensity and extreme events over the last decade. The study also provides evidence of a disparity that exists between the west and east of SWA, with the east recording a stronger increase in the mean intensity of wet days and extreme rainfall during the second rainy season (September–November)

    Modelling Cloud Cover Climatology over Tropical Climates in Ghana

    No full text
    Clouds play a crucial role in Earth’s climate system by modulating radiation fluxes via reflection and scattering, and thus the slightest variation in their spatial coverage significantly alters the climate response. Until now, due to the sparse distribution of advanced observation stations, large uncertainties in cloud climatology remain for many regions. Therefore, this paper estimates total cloud cover (TCC) by using sunshine duration measured in different tropical climates in Ghana. We used regression tests for each climate zone, coupled with bias correction by cumulative distribution function (CDF) matching, to develop the estimated TCC dataset from nonlinear empirical equations. It was found that the estimated percentage TCC, 20.8–84.7 ± 3.5%, compared well with station-observed TCC, 21.9–84.4 ± 3.5%, with root mean square errors of 1.08–9.13 ± 1.8% and correlation coefficients of 0.87–0.99 ± 0.03. Overall, spatiotemporal characteristics were preserved, establishing that denser clouds tended to prevail mostly over the southern half of the forest-type climate during the June–September period. Moreover, the model and the observations show a non-normality, indicating a prevalence of above-average TCC over the study area. The results are useful for weather prediction and application in meteorology

    Potential Impact of 1.5oC and 2oC global warming on consecutive dry and wet days over West Africa

    No full text
    We examine the impact of +1.5 ◦C and +2 ◦C global warming levels above pre-industrial levels on consecutive dry days (CDD) and consecutive wet days (CWD), two key indicators for extreme precipitation and seasonal drought. This is done using climate projections from a multi-model ensemble of 25 regional climate model (RCM) simulations. The RCMs take boundary conditions from ten global climate models (GCMs) under the RCP8.5 scenario.We define CDD as the maximum number of consecutive days with rainfall amount less than 1mm and CWD as the maximum number of consecutive days with rainfall amount more than 1 mm. The differences in model representations of the change in CDD and CWD, at 1.5 ◦C and 2◦C global warming, and based on the control period 1971−2000 are reported. The models agree on a noticeable response to both 1.5 ◦C and 2◦C warming for each index. Enhanced warming results in a reduction in mean rainfall across the region.More than 80% of ensemble members agree that CDD will increase over the Guinea Coast, in tandem with a projected decrease in CWD at both 1.5 ◦C and 2◦C global warming levels. These projected changes may influence already fragile ecosystems and agriculture in the region, both of which are strongly affected by mean rainfall and the length of wet and dry periods.JRC.E.1-Disaster Risk Managemen
    corecore