4 research outputs found

    Quantum Machine Learning in Climate Change and Sustainability: a Review

    Full text link
    Climate change and its impact on global sustainability are critical challenges, demanding innovative solutions that combine cutting-edge technologies and scientific insights. Quantum machine learning (QML) has emerged as a promising paradigm that harnesses the power of quantum computing to address complex problems in various domains including climate change and sustainability. In this work, we survey existing literature that applies quantum machine learning to solve climate change and sustainability-related problems. We review promising QML methodologies that have the potential to accelerate decarbonization including energy systems, climate data forecasting, climate monitoring, and hazardous events predictions. We discuss the challenges and current limitations of quantum machine learning approaches and provide an overview of potential opportunities and future work to leverage QML-based methods in the important area of climate change research.Comment: 8 pages Accepted for publication in AAAI proceedings (AAAI Fall symposium 2023

    Quantum Machine Learning in Climate Change and Sustainability: A Short Review

    No full text
    Climate change and its impact on global sustainability are critical challenges, demanding innovative solutions that combine cutting-edge technologies and scientific insights. Quantum machine learning (QML) has emerged as a promising paradigm that harnesses the power of quantum computing to address complex problems in various domains including climate change and sustainability. In this work, we survey existing literature that applies quantum machine learning to solve climate change and sustainability-related problems. We review promising QML methodologies that have the potential to accelerate decarbonization including energy systems, climate data forecasting, climate monitoring, and hazardous events predictions. We discuss the challenges and current limitations of quantum machine learning approaches and provide an overview of potential opportunities and future work to leverage QML-based methods in the important area of climate change research

    Robust opportunistic optimal energy management of a mixed microgrid under asymmetrical uncertainties

    No full text
    Energy management within microgrids under the presence of large number of renewables such as photovoltaics is complicated due to uncertainties involved. Randomness in energy production and consumption make both the prediction and optimality of exchanges challenging. In this paper, we evaluate the impact of uncertainties on optimality of different robust energy exchange strategies. To address the problem, we present AIROBE, a data-driven system that uses machine-learning-based predictions of energy supply and demand as input to calculate robust energy exchange schedules using a multiband robust optimization approach to protect from deviations. AIROBE allows the decision maker to tradeoff robustness with stability of the system and energy costs. Our evaluation shows, how AIROBE can deal effectively with asymmetric deviations and how better prediction methods can reduce both the operational cost while at the same time may lead to increased operational stability of the system
    corecore