1,596 research outputs found

    Potassium-doped BaFe2As2 superconducting thin films with a transition temperature of 40 K

    Full text link
    We report the growth of potassium-doped BaFe2As2 thin films, where the major charge carriers are holes, on Al2O3 (0001) and LaAlO3 (001) substrates by using an ex-situ pulsed laser deposition technique. The measured Tc's are 40 and 39 K for the films grown on Al2O3 and LaAlO3, respectively and diamagnetism indicates that the films have good bulk superconducting properties below 36 and 30 K, respectively. The X-ray diffraction patterns for both films indicated a preferred c-axis orientation, regardless of the substrate structures of LaAlO3 and Al2O3. The upper critical field at zero temperature was estimated to be about 155 T.Comment: 6 pages including 3 figure

    Structural dynamics and divergence of the polygalacturonase gene family in land plants

    Get PDF
    A distinct feature of eukaryotic genomes is the presence of gene families. The polygalacturonase (PG) (EC3.2.1.15) gene family is one of the largest gene families in plants. PG is a pectin-digesting enzyme with a glycoside hydrolase 28 domain. It is involved in numerous plant developmental processes. The evolutionary processes accounting for the functional divergence and the specialized functions of PGs in land plants are unclear. Here, phylogenetic and gene structure analysis of PG genes in algae and land plants revealed that land plant PG genes resulted from differential intron gain and loss, with the latter event predominating. PG genes in land plants contained 15 homologous intron blocks and 13 novel intron blocks. Intron position and phase were not conserved between PGs of algae and land plants but conserved among PG genes of land plants from moss to vascular plants, indicating that the current introns in the PGs in land plants appeared after the split between unicellular algae and multicelluar land plants. These findings demonstrate that the functional divergence and differentiation of PGs in land plants is attributable to intronic loss. Moreover, they underscore the importance of intron gain and loss in genomic adaptation to selective pressure

    Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption

    Get PDF
    Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient (Vav1−/−) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of Vav1−/− mice than in WT mice. Furthermore, the bone status of Vav1−/− mice was analyzed in situ and the femurs of Vav1−/− mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an αvβ3 integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption

    Rim 2/Hipa CACTA transposon display ; A new genetic marker technique in Oryza species

    Get PDF
    BACKGROUND: Transposons constitute the major fractions of repetitive sequences in eukaryotes, and have been crucial in the shaping of current genomes. Transposons are generally divided into two classes according to the mechanism underlying their transposition: RNA intermediate class 1 and DNA intermediate class 2. CACTA is a class 2 transposon superfamily, which is found exclusively in plants. As some transposons, including the CACTA superfamily, are highly abundant in plant species, and their nucleotide sequences are highly conserved within a family, they can be utilized as genetic markers, using a slightly modified version of the conventional AFLP protocol. Rim2 /Hipa is a CACTA transposon family having 16 bp consensus TIR sequences to be present in high copy numbers in rice genome. This research was carried out in order to develop a Rim2/Hipa CACTA-AFLP or Rim2/Hipa CACTA-TD (transposon display, hereafter Rim2/Hipa-TD) protocol for the study of genetic markers in map construction and the study of genetic diversity in rice. RESULTS: Rim2/Hipa-TD generated ample polymorphic profiles among the different rice accessions, and the amplification profiles were highly reproducible between different thermocyclers and Taq polymerases. These amplification profiles allowed for clear distinction between two different ecotypes, Japonica and Indica, of Oryza sativa. In the analysis of RIL populations, the Rim2/Hipa-TD markers were found to be segregated largely in a dominant manner, although in a few cases, non-parental bands were observed in the segregating populations. Upon linkage analysis, the Rim2/Hipa-TD markers were found to be distributed in the regions proximal to the centromeres of the chromosomes. The distribution of the Rim2/Hipa CACTA elements was surveyed in 15 different Oryza species via Rim2/Hipa-TD. While Rim2/Hipa-TD yielded ample amplification profiles between 100 to 700 bp in the AA diploid Oryza species, other species having BB, CC, EE, BBCC and CCDD, profiles demonstrated that most of the amplified fragments were larger than 400 bp, and that our methods were insufficient to clearly distinguish between these fragments. However, the overall amplification profiles between species in the Oryza genus were fully distinct. Phenetic relationships among the AA diploid Oryza species, as evidenced by the Rim2/Hipa-TD markers, were matched with their geographical distributions. CONCLUSION: The abundance of the Rim2/Hipa TIR sequences is very informative since the Rim2/Hipa-TD produced high polymorphic profiles with ample reproducibility within a species as well as between species in the Oryza genus. Therefore, Rim2/Hipa-TD markers can be useful in the development of high-density of genetic map around the centromeric regions. Rim2/Hipa-TD may also prove useful in evaluations of genetic variation and species relationships in the Oryza species

    Fabrication of n-type nanotube transistors with large-work-function electrodes

    Get PDF
    The authors found experimentally that carbon nanotube field-effect transistors (CNFETs) could exhibit n -type characteristics even though their electrodes consist of a large-work-function metal such as Co. To explain their result, which is contrary to the general belief that CNFETs with large-work-function electrodes always lead to p -type characteristics, ab initio electronic structure calculation for the metal-carbon nanotube junction was performed, which showed that the Fermi level alignment at the junction could sensitively depend on microscopic structures of the metal-carbon nanotube junction. This suggests that deposition method of electrodes as well as the metal type could be utilized to obtain n -type CNFETs.open121

    In-situ fabrication of cobalt-doped SrFe2As2 thin films by using pulsed laser deposition with excimer laser

    Full text link
    The remarkably high superconducting transition temperature and upper critical field of iron(Fe)-based layered superconductors, despite ferromagnetic material base, open the prospect for superconducting electronics. However, success in superconducting electronics has been limited because of difficulties in fabricating high-quality thin films. We report the growth of high-quality c-axis-oriented cobalt(Co)-doped SrFe2As2 thin films with bulk superconductivity by using an in-situ pulsed laser deposition technique with a 248-nm-wavelength KrF excimer laser and an arsenic(As)-rich phase target. The temperature and field dependences of the magnetization showing strong diamagnetism and transport critical current density with superior Jc-H performance are reported. These results provide necessary information for practical applications of Fe-based superconductors.Comment: 8 pages, 3figures. to be published at Appl. Phys. Let

    Multi-functionalities of natural polysaccharide for enhancing electrochemical performance of macroporous Si anodes

    Get PDF
    Highly porous electrodes composed of natural polysaccharide act as a microporous binder and a carbon-coating source of micron-sized macroporous Si active materials was achieved. This highly porous Si-based anodes exhibit significantly improved electrochemical properties which show a high specific capacity (2010 mA h g-1) after 80 cycles.close1

    Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether <it>Bifidobacteria </it>isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content.</p> <p>Methods</p> <p><it>In vitro </it>culture experiments were performed to evaluate the ability of <it>Bifidobacterium </it>spp. isolated from healthy Koreans (20~30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (10<sup>8</sup>~10<sup>9 </sup>CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks.</p> <p>Results</p> <p><it>B. longum </it>SPM1207 reduced serum total cholesterol and LDL levels significantly (<it>p </it>< 0.05), and slightly increased serum HDL. <it>B. longum </it>SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities.</p> <p>Conclusion</p> <p>Daily consumption of <it>B. longum </it>SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.</p

    Autosomal dominant transmission of complicated hereditary spastic paraplegia due to a dominant negative mutation of KIF1A, SPG30 gene.

    Get PDF
    KIF1A is a brain-specific anterograde motor protein that transports cargoes towards the plus-ends of microtubules. Many variants of the KIF1A gene have been associated with neurodegenerative diseases and developmental delay. Homozygous mutations of KIF1A have been identified in a recessive subtype of hereditary spastic paraplegia (HSP), SPG30. In addition, KIF1A mutations have been found in pure HSP with autosomal dominant inheritance. Here we report the first case of familial complicated HSP with a KIF1A mutation transmitted in autosomal dominant inheritance. A heterozygous p.T258M mutation in KIF1A was found in a Korean family through targeted exome sequencing. They displayed phenotypes of mild intellectual disability with language delay, epilepsy, optic nerve atrophy, thinning of corpus callosum, periventricular white matter lesion, and microcephaly. A structural modeling revealed that the p.T258M mutation disrupted the binding of KIF1A motor domain to microtubules and its movement along microtubules. Assays of peripheral accumulation and proximal distribution of KIF1A motor indicated that the KIF1A motor domain with p.T258M mutation has reduced motor activity and exerts a dominant negative effect on wild-type KIF1A. These results suggest that the p.T258M mutation suppresses KIF1A motor activity and induces complicated HSP accompanying intellectual disability transmitted in autosomal dominant inheritance. © The Author(s) 20171
    corecore