43 research outputs found

    転載:新生仔マウス高濃度酸素暴露肺障害モデルにおける肺胞微小血管障害の形態学的特徴

    Get PDF
    臨時増刊1号東京女子医科大学医学部解剖学・発生生物学講座 講座主任 江﨑太一教授退任記念特別

    Extensive Atrophic Gastritis Increases Intraduodenal Hydrogen Gas

    Get PDF
    Objective. Gastric acid plays an important part in the prevention of bacterial colonization of the gastrointestinal tract. If these bacteria have an ability of hydrogen (H2) fermentation, intraluminal H2 gas might be detected. We attempted to measure the intraluminal H2 concentrations to determine the bacterial overgrowth in the gastrointestinal tract. Patients and methods. Studies were performed in 647 consecutive patients undergoing upper endoscopy. At the time of endoscopic examination, we intubated the stomach and the descending part of the duodenum without inflation by air, and 20 mL of intraluminal gas samples of both sites was collected through the biopsy channel. Intraluminal H2 concentrations were measured by gas chromatography. Results. Intragastric and intraduodenal H2 gas was detected in 566 (87.5%) and 524 (81.0%) patients, respectively. The mean values of intragastric and intraduodenal H2 gas were 8.5 ± 15.9 and 13.2 ± 58.0 ppm, respectively. The intraduodenal H2 level was increased with the progression of atrophic gastritis, whereas the intragastric H2 level was the highest in patients without atrophic gastritis. Conclusions. The intraduodenal hydrogen levels were increased with the progression of atrophic gastritis. It is likely that the influence of hypochlorhydria on bacterial overgrowth in the proximal small intestine is more pronounced, compared to that in the stomach

    COVID-19 vaccine effectiveness against severe COVID-19 requiring oxygen therapy, invasive mechanical ventilation, and death in Japan: A multicenter case-control study (MOTIVATE study).

    Get PDF
    INTRODUCTION: Since the SARS-CoV-2 Omicron variant became dominant, assessing COVID-19 vaccine effectiveness (VE) against severe disease using hospitalization as an outcome became more challenging due to incidental infections via admission screening and variable admission criteria, resulting in a wide range of estimates. To address this, the World Health Organization (WHO) guidance recommends the use of outcomes that are more specific to severe pneumonia such as oxygen use and mechanical ventilation. METHODS: A case-control study was conducted in 24 hospitals in Japan for the Delta-dominant period (August-November 2021; "Delta") and early Omicron (BA.1/BA.2)-dominant period (January-June 2022; "Omicron"). Detailed chart review/interviews were conducted in January-May 2023. VE was measured using various outcomes including disease requiring oxygen therapy, disease requiring invasive mechanical ventilation (IMV), death, outcome restricting to "true" severe COVID-19 (where oxygen requirement is due to COVID-19 rather than another condition(s)), and progression from oxygen use to IMV or death among COVID-19 patients. RESULTS: The analysis included 2125 individuals with respiratory failure (1608 cases [75.7%]; 99.2% of vaccinees received mRNA vaccines). During Delta, 2 doses provided high protection for up to 6 months (oxygen requirement: 95.2% [95% CI:88.7-98.0%] [restricted to "true" severe COVID-19: 95.5% {89.3-98.1%}]; IMV: 99.6% [97.3-99.9%]; fatal: 98.6% [92.3-99.7%]). During Omicron, 3 doses provided high protection for up to 6 months (oxygen requirement: 85.5% [68.8-93.3%] ["true" severe COVID-19: 88.1% {73.6-94.7%}]; IMV: 97.9% [85.9-99.7%]; fatal: 99.6% [95.2-99.97]). There was a trend towards higher VE for more severe and specific outcomes. CONCLUSION: Multiple outcomes pointed towards high protection of 2 doses during Delta and 3 doses during Omicron. These results demonstrate the importance of using severe and specific outcomes to accurately measure VE against severe COVID-19, as recommended in WHO guidance in settings of intense transmission as seen during Omicron

    Gift-Giving in Romantic Couples Serves as a Commitment Signal

    No full text

    Adsorption of β

    No full text

    Imaging of hepatic drug transporters with [131I]6-β-iodomethyl-19-norcholesterol

    No full text
    We examined whether [131I]6-β-iodomethyl-19-norcholesterol (NP-59), a cholesterol analog, can be used to measure function of hepatic drug transporters. Hepatic uptake of NP-59 with and without rifampicin was evaluated using HEK293 cells expressing solute carrier transporters. The stability of NP-59 was evaluated using mouse blood, bile, and liver, and human liver S9. Adenosine triphosphate-binding cassette (ABC) transporters for bile excretion were examined using hepatic ABC transporter vesicles expressing multidrug resistance protein 1, multidrug resistance-associated protein (MRP)1-4, breast cancer resistance protein (BCRP), or bile salt export pump with and without MK-571 and Ko143. Single photon emission computed tomography (SPECT) was performed in normal mice injected with NP-59 in the presence or absence of Ko143. Uptake of NP-59 into HEK293 cells expressing organic anion transporting polypeptide (OATP)1B1 and OATP1B3 was significantly higher than that into mock cells and was inhibited by rifampicin. NP-59 was minimally metabolized in mouse blood, bile, and liver, and human liver S9 after 120 min of incubation. In vesicles, NP-59 was transported by MRP1 and BCRP. Excretion of NP-59 into bile via BCRP was observed in normal mice with and without Ko143 in the biological distribution and SPECT imaging. NP-59 can be used to visualize and measure the hepatic function of OATP1B1, OATP1B3, and BCRP

    Inverse Gas Chromatography

    No full text

    Transport mechanism and affinity of [99mTc]Tc-mercaptoacetyltriglycine ([99mTc]MAG3) on the apical membrane of renal proximal tubule cells

    No full text
    Technetium-99m-labeled mercaptoacetyltriglycine ([99mTc]MAG3) is widely used for evaluation of transplanted kidneys, diagnosis of tubular necrosis, and scintigraphic studies of tubular function. [99mTc]MAG3 is a substrate for organic anion transporter (OAT)1 and OAT3 on the basolateral membrane side for renal secretion. We investigated the transport mechanism and affinity of [99mTc]MAG3 on the apical membrane of renal proximal tubule cells for renal secretion. Adenosine triphosphate-binding cassette (ABC) transporters for renal secretion of [99mTc]MAG3 were examined using ABC transporter vesicles expressing multiple drug resistance 1 (MDR1), breast cancer resistance protein (BCRP), multidrug resistance-associated protein (MRP)2, and MRP4. MK-571, a MRP inhibitor, was applied to measure the Km and Vmax of MRP2 and MRP4 in a vesicle transport assay. Single photon emission computed tomography (SPECT) was performed in normal rats and MRP2-deficient Eisai hyperbilirubinuria rats (EHBR) using [99mTc]MAG3 with and without MK-571. [99mTc]MAG3 uptake in adenosine triphosphate was significantly higher than that in adenosine monophosphate in vesicles that highly expressed MRP2 and MRP4. The affinity of [99mTc]MAG3 for MRP4 was higher than that for MRP2. Renal secretion via MRP2 and MRP4 was identified by comparing normal and EHBR rats with and without MK-571 on SPECT. [99mTc]MAG3 is transported via MRP2 and MRP4 on the apical membrane of renal proximal tubule cells. The affinity of MRP4 is higher than that of MRP2
    corecore