78 research outputs found

    Sodium p-Toluenesulfinate Enhances the Bonding Durability of Universal Adhesives on Deproteinized Eroded Dentin

    Get PDF
    The effects of deproteinization using sodium hypochlorite (NaOCl) and the subsequent application of an antioxidant (sodium p-toluenesulfinate, STS) onto the bonding durability of universal adhesives on eroded dentin were investigated. Untreated sound dentin served as the control, whereas eroded dentin, which had been prepared by pH-cycling in 1% citric acid and a remineralization solution, was either untreated, deproteinized with a 10% NaOCl gel or deproteinized with the 10% NaOCl gel and subsequently treated with an STS-containing agent. The dentin surfaces were bonded using a universal adhesive (Clearfil Universal Bond Quick, Scotchbond Universal or G-Premio Bond), and the micro-tensile bond strength (µTBS) test was performed after 24 h or 10,000 thermal cycles. The µTBS data were statistically analyzed using a three-way ANOVA and Tukey’s HSD post hoc tests. The lowest µTBS was measured on untreated eroded dentin (p 0.05), but the highest µTBS was obtained if deproteinization was followed by the application of STS. Thermocycling significantly decreased µTBS in all groups (p 0.05). This indicated that deproteinization, followed by the application of STS, could enhance the bonding durability of universal adhesives on eroded dentin

    DNA Methylation of Colon Mucosa in Ulcerative Colitis Patients: Correlation with Inflammatory Status

    Get PDF
    Background: Although DNA methylation of colonic mucosa in ulcerative colitis (UC) has been suggested, the majority of published reports indicate the correlation between methylation of colon mucosa and occurrence of UC-related dysplasia or cancer without considering the mucosal inflammatory status. The aim of this study was to verify whether mucosal inflammation-specific DNA methylation occurs in the colon of UC. Methods: Of 15 gene loci initially screened, six loci (ABCB1, CDH1. ESR1, GDNF, HPP1, and MYOD1) methylated in colon mucosa of UC were analyzed according to inflammatory status using samples from 28 surgically resected UC patients. Results: Four of six regions (CDH1, GDNF, HPP1, and MYOD1) were more highly methylated in the active inflamed mucosa than in the quiescent mucosa in each UC patient (P = 0.003, 0.0002, 0.02, and 0.048, respectively). In addition, when the methylation status of all samples taken from examined patients was stratified according to inflammatory status, methylation of CDHI and GDNF loci was significantly higher in active inflamed mucosa than in quiescent mucosa (P = 0.045 and 0.002, respectively). Multiple linear regression analysis revealed that active inflammation was an independent factor of methylation for CDHI and GDNF. DNA methyltransferase 1 and 3b were highly expressed in colon epithelial cells with active mucosa] inflammation, suggesting their involvement in inflammation-dependent methylation. Conclusions: Methylation in colonic mucosa of UC was correlated with mucosal inflammatory status, suggesting the involvement of methylation due to chronic active inflammation in UC carcinogenesis

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore