55 research outputs found

    Uniting the Quiescent Emission and Burst Spectra of Magnetar Candidates

    Full text link
    Spectral studies of quiescent emission and bursts of magnetar candidates using XMM-Newton, Chandra and Swift data are presented. Spectra of both the quiescent emission and the bursts for most magnetar candidates are reproduced by a photoelectrically absorbed two blackbody function (2BB). There is a strong correlation between lower and higher temperatures of 2BB (kT_LT and kT_HT) for the magnetar candidates of which the spectra are well reproduced by 2BB. In addition, a square of radius for kT_T (R_LT^2) is well correlated with a square of radius for kT_HT (R_HT^2). A ratio kT_LT/kT_HT ~ 0.4 is nearly constant irrespective of objects and/or emission types (i.e., the quiescent emission and the bursts). This would imply a common emission mechanism among the magnetar candidates. The relation between the quiescent emission and the bursts might be analogous to a relation between microflares and solar flares of the sun. Three AXPs (4U 0142+614, 1RXS J170849.0-400910 and 1E 2259+586) seem to have an excess above ~7 keV which well agrees with a non-thermal hard component discovered by INTEGRAL.Comment: 17 pages, 5 figures, 12 tables, Accepted for publication in PAS

    Spectral Comparison of Weak Short Bursts to the Persistent X-rays from the Magnetar 1E 1547.0-5408 in its 2009 Outburst

    Get PDF
    In January 2009, the 2.1-sec anomalous X-ray pulsar 1E 1547.0-5408 evoked intense burst activity. A follow-up Suzaku observation on January 28 recorded enhanced persistent emission both in soft and hard X-rays (Enoto et al. 2010b). Through re-analysis of the same Suzaku data, 18 short bursts were identified in the X-ray events recorded by the Hard X-ray Detector (HXD) and the X-ray Imaging Spectrometer (XIS). Their spectral peaks appear in the HXD-PIN band, and their 10-70 keV X-ray fluences range from ~2e-9 erg cm-2 to 1e-7 erg cm-2. Thus, the 18 events define a significantly weaker burst sample than was ever obtained, ~1e-8-1e-4 erg cm-2. In the ~0.8 to ~300 keV band, the spectra of the three brightest bursts can be represented successfully by a two-blackbody model, or a few alternative ones. A spectrum constructed by stacking 13 weaker short bursts with fluences in the range (0.2-2)e-8 erg s-1 is less curved, and its ratio to the persistent emission spectrum becomes constant at ~170 above ~8 keV. As a result, the two-blackbody model was able to reproduce the stacked weaker-burst spectrum only after adding a power-law model, of which the photon index is fixed at 1.54 as measured is the persistent spectrum. These results imply a possibility that the spectrum composition employing an optically-thick component and a hard power-law component can describe wide-band spectra of both the persistent and weak-burst emissions, despite a difference of their fluxes by two orders of magnitude. Based on the spectral similarity, a possible connection between the unresolved short bursts and the persistent emission is discussed.Comment: 21 pages, 18 figures and 3 tables. Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    The Suzaku Discovery of A Hard Power-Law Component in the Spectra of Short Bursts from SGR 0501+4516

    Full text link
    Using data with the Suzaku XIS and HXD, spectral studies of short bursts from the soft gamma repeater SGR 0501+4516 were performed. In total, 32 bursts were detected during the ~60 ks of observation conducted in the 2008 August activity. Excluding the strongest one, the remaining 31 bursts showed an average 2--40 keV fluence of 1.0(-0.5,+0.3)*10^-9 erg cm^-2. A 1--40 keV spectrum summed over them leaves significant positive residuals in the HXD-PIN band with chi^2/d.o.f. = 74/50, when fitted with a two-blackbody function. By adding a power law model, the fit became acceptable with chi^2/d.o.f. = 56/48, yielding a photon index of Gamma=1.0(-0.3,+0.4). This photon index is comparable to Gamma=1.33(-0.16,+0.23) (Enoto et al. 2010a) for the persistent emission of the same object obtained with Suzaku. The two-blackbody components showed very similar ratios, both in the temperature and the emission radii, to those comprising the persistent emission. However, the power-law to two-blackbody flux ratio was possibly higher than that of the persistent emission at 2.6 sigma level. Based on these measurements, average wide-band properties of these relatively weak bursts are compared with those of the persistent emission.Comment: 11 pages, 8 figures, 2 tables, Accepted for publication in PASJ (Suzaku & MAXI special issue

    Time-evolution of Peak Energy and Luminosity Relation within Pulses for GRB 061007: Probing Fireball Dynamics

    Full text link
    We perform a time-resolved spectral analysis of bright, long Gamma-ray burst GRB 061007 using Suzaku/WAM and Swift/BAT. Thanks to the large effective area of the WAM, we can investigate the time evolution of the spectral peak energy, Et_peak and the luminosity Lt_iso with 1-sec time resolution, and we find that luminosity Lt_iso with 1-sec time resolution, and we find that the time-resolved pulses also satisfy the Epeak-Liso relation, which was found for the time-averaged spectra of other bursts, suggesting the same physical conditions in each pulse. Furthermore, the initial rising phase of each pulse could be an outlier of this relation with higher Et_peak value by about factor 2. This difference could suggest that the fireball radius expands by a factor of 2-4 and/or bulk Lorentz factor of the fireball is decelerated by a factor of 4 during the initial phase, providing a new probe of the fireball dynamics in real time.Comment: 21 pages, 16 figures, accepted for publication in PAS

    Suzaku Discovery of a Hard X-Ray Tail in the Persistent Spectra from the Magnetar 1E 1547.0-5408 during its 2009 Activity

    Full text link
    The fastest-rotating magnetar 1E 1547.0-5408 was observed in broad-band X-rays with Suzaku for 33 ks on 2009 January 28-29, 7 days after the onset of its latest bursting activity. After removing burst events, the absorption-uncorrected 2-10 keV flux of the persistent emission was measured with the XIS as 5.7e-11 ergs cm-2 s-1, which is 1-2 orders of magnitude higher than was measured in 2006 and 2007 when the source was less active. The persistent emission was also detected significantly with the HXD in >10 keV up to at least ~110 keV, with an even higher flux of 1.3e-10 ergs cm-2 s-1 in 20-100 keV. The pulsation was detected at least up to 70 keV at a period of 2.072135+/-0.00005 s, with a deeper modulation than was measured in a fainter state. The phase-averaged 0.7-114 keV spectrum was reproduced by an absorbed blackbody emission with a temperature of 0.65+/-0.02 keV, plus a hard power-law with a photon index of ~1.5. At a distance of 9 kpc, the bolometric luminosity of the blackbody and the 2-100 keV luminosity of the hard power-law are estimated as (6.2+/-1.2)e+35 ergs s-1 and 1.9e+36 ergs s-1, respectively, while the blackbody radius becomes ~5 km. Although the source had not been detected significantly in hard X-rays during the past fainter states, a comparison of the present and past spectra in energies below 10 keV suggests that the hard component is more enhanced than the soft X-ray component during the persistent activity.Comment: 12 pages, 7 figures, PASJ Vol.62 No.2 accepte

    Observations of the Prompt Gamma-Ray Emission of GRB 070125

    Get PDF
    The long, bright gamma-ray burst GRB 070125 was localized by the Interplanetary Network. We present light curves of the prompt gamma-ray emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and \textit{Swift}-BAT. We detail the results of joint spectral fits with Konus and RHESSI data. The burst shows moderate hard-to-soft evolution in its multi-peaked emission over a period of about one minute. The total burst fluence as observed by Konus is 1.79×1041.79 \times 10^{-4} erg/cm2^2 (20 keV--10 MeV). Using the spectroscopic redshift z=1.548z=1.548, we find that the burst is consistent with the ``Amati'' Epeak,iEisoE_{peak,i}-E_{iso} correlation. Assuming a jet opening angle derived from broadband modeling of the burst afterglow, GRB 070125 is a significant outlier to the ``Ghirlanda'' Epeak,iEγE_{peak,i}-E_\gamma correlation. Its collimation-corrected energy release Eγ=2.5×1052E_\gamma = 2.5 \times 10^{52} ergs is the largest yet observed.Comment: 25 pages, 6 figures; accepted for publication in ApJ. Improved spectral fits and energetics estimate

    Suzaku Observations of SGR 1900+14 and SGR 1806-20

    Full text link
    Spectral and timing studies of Suzaku ToO observations of two SGRs, 1900+14 and 1806-20, are presented. The X-ray quiescent emission spectra were well fitted by a two blackbody function or a blackbody plus a power law model. The non-thermal hard component discovered by INTEGRAL was detected by the PIN diodes and its spectrum was reproduced by the power law model reported by INTEGRAL. The XIS detected periodicity P = 5.1998+/-0.0002 s for SGR 1900+14 and P = 7.6022+/-0.0007 s for SGR 1806-20. The pulsed fraction was related to the burst activity for SGR 1900+14.Comment: 8 pages, 3 figures, Accepted for publication in PASJ (Suzaku 3rd special issue

    A Comprehensive Study of Short Bursts from SGR 1806-20 and SGR 1900+14 Detected by HETE-2

    Get PDF
    We present the results of temporal and spectral studies of the short burst (less than a few hundred milliseconds) from the soft gamma repeaters (SGRs) 1806-20 and 1900+14 using the HETE-2 samples. In five years from 2001 to 2005, HETE-2 detected 50 bursts which were localized to SGR 1806-20 and 5 bursts which were localized to SGR 1900+14. Especially SGR 1806-20 was active in 2004, and HETE-2 localized 33 bursts in that year. The cumulative number-intensity distribution of SGR 1806-20 in 2004 is well described by a power law model with an index of -1.1+/-0.6. It is consistent with previous studies but burst data taken in other years clearly give a steeper distribution. This may suggest that more energetic bursts could occur more frequently in periods of greater activity. A power law cumulative number-intensity distribution is also known for earthquakes and solar flares. It may imply analogous triggering mechanisms. Although spectral evolution during bursts with a time scale of > 20 ms is not common in the HETE-2 sample, spectral softening due to the very rapid (< a few milliseconds) energy reinjection and cooling may not be excluded. The spectra of all short bursts are well reproduced by a two blackbody function (2BB) with temperatures ~4 and ~11 keV. From the timing analysis of the SGR 1806-20 data, a time lag of 2.2+/-0.4 ms is found between the 30-100 keV and 2-10 keV radiation bands. This may imply (1) a very rapid spectral softening and energy reinjection, (2) diffused (elongated) emission plasma along the magnetic field lines in pseudo equilibrium with multi-temperatures, or (3) a separate (located at < 700 km) emission region of softer component (say, ~4 keV) which could be reprocessed X-rays by higher energy (> 11 keV) photons from an emission region near the stellar surface.Comment: 50 pages, 14 figures, accepted for publication in PAS

    Suzaku Observation of the Anomalous X-ray Pulsar CXOU J164710.2--455216

    Full text link
    Suzaku TOO observation of the anomalous X-ray pulsar CXOU J164710.2-455216 was performed on 2006 September 23--24 for a net exposure of 38.8 ks. During the observation, the XIS was operated in 1/8 window option to achieve a time resolution of 1 s. Pulsations are clearly detected in the XIS light curves with a barycenter corrected pulse period of 10.61063(2) s. The XIS pulse profile shows 3 peaks of different amplitudes with RMS fractional amplitude of ~11% in 0.2--6.0 keV energy band. Though the source was observed with the HXD of Suzaku, the data is highly contaminated by the nearby bright X-ray source GX 340+0 which was in the HXD field of view. The 1-10 keV XIS spectra are well fitted by two blackbody components. The temperatures of two blackbody components are found to be 0.61+/-0.01 keV and 1.22+/-0.06 keV and the value of the absorption column density is 1.73+/-0.03 x 10^{22} atoms cm^{-2}. The observed source flux in 1-10 keV energy range is calculated to be 2.6 x 10^{-11} ergs cm^{-2} s^{-1} with significant contribution from the soft blackbody component (kT = 0.61 keV). Pulse phase resolved spectroscopy of XIS data shows that the flux of the soft blackbody component consists of three narrow peaks, whereas the flux of the other component shows a single peak over the pulse period of the AXP. The blackbody radii changes between 2.2-2.7 km and 0.28-0.38 km (assuming the source distance to be 5 kpc) over pulse phases for the soft and hard components, respectively. The details of the results obtained from the timing and spectral analysis is presented.Comment: 16 pages, 9 figures, Accepted for publication in Publications of the Astronomical Society of Japan (PASJ
    corecore