47 research outputs found
VLF Signal Anomalies During Cyclone Activity in the Atlantic Ocean
In this paper we present ionospheric disturbances during the simultaneous presence of two to three Large Meteorological Systems, classified as hurricanes and tropical storms, in the Atlantic Ocean from August to November 2016. The ionospheric disturbances were detected by very low frequency (3–30 kHz) signals from two North American transmitters observed in Algiers (36.75°N, 03.47°E). The results show clear anomalies in the amplitude both at nighttime and at daytime. At nighttime, the anomalies were observed in association with all Large Meteorological Systems even at low stage of storm intensity (tropical depression). The anomalies showed periodicities between 2 and 3 hr with a strong decrease in the signal amplitude. The wave‐like features were confirmed by the mother wavelet analysis of the normalized signal amplitude. These signal anomalies may result from traveling ionospheric disturbances generated by tropical storms and hurricanes associated gravity waves
Perturbations to the lower ionosphere by tropical cyclone Evan in the South Pacific region
Very low frequency (VLF) electromagnetic signals from navigational transmitters propagate worldwide in the Earth-ionosphere waveguide formed by the Earth and the electrically conducting lower ionosphere. Changes in the signal properties are signatures of variations in the conductivity of the reflecting boundary of the lower ionosphere which is located in the mesosphere and lower thermosphere, and their analysis is, therefore, a way to study processes in these remote regions. Here we present a study on amplitude perturbations of local origin on the VLF transmitter signals (NPM, NLK, NAA, and JJI) observed during tropical cyclone (TC) Evan, 9–16 December 2012 when TC was in the proximity of the transmitter-receiver links. We observed a maximum amplitude perturbation of 5.7 dB on JJI transmitter during 16 December event. From Long Wave Propagation Capability model applied to three selected events we estimate a maximum decrease in the nighttime D region reference height (H′) by ~5.2 km (13 December, NPM) and maximum increase in the daytime D region H′ by 6.1 km and 7.5 km (14 and 16 December, JJI). The results suggest that the TC caused the neutral densities of the mesosphere and lower thermosphere to lift and sink (bringing the lower ionosphere with it), an effect that may be mediated by gravity waves generated by the TC. The perturbations were observed before the storm was classified as a TC, at a time when it was a tropical depression, suggesting the broader conclusion that severe convective storms, in general, perturb the mesosphere and the stratosphere through which the perturbations propagate
Multi-instrumental analysis of large sprite events and their producing storm in southern France
International audienc
Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe
At 2336:56 UTC on 12 December 2009, a bright gigantic jet (GJ) was recorded by an observer in Italy. Forty-nine additional sprites, elves, halos and two cases of upward lightning were observed that night. The location of the GJ corresponded to a distinct cloud top (-34°C) west of Ajaccio, Corsica. The GJ reached approximately 91 km altitude, with a "trailing jet" reaching 49-59 km, matching with earlier reported GJs. The duration was short at 120-160 ms. This is the first documented GJ which emerged from a maritime winter thunderstorm only 6.5 km tall, showing high cloud tops are not required for initiation of GJs. In the presence of strong vertical wind shear, the meteorological situation was different from typical outbreaks of fall and winter thunderstorms in the Mediterranean. During the trailing jet phase of the GJ, a sprite with halo triggered by a nearby cloud-to-ground lightning flash occurred at a relatively low altitude (<72 km). At the same time, the trailing jet and beads were reilluminated. Electromagnetic waveforms from Hungary, Poland, and the USA revealed this GJ is the first reported to transfer negative charge (approximately 136 C) from the ionosphere to the positively charged origins in the cloud (i.e., a positive cloud-to-ionosphere discharge, +CI), with a large total charge moment change of 11600 C km and a maximum current of 3.3 kA. Early VLF transmitter amplitude perturbations detected concurrently with the GJ confirm the production of large conductivity changes due to electron density enhancements in the D-region of the ionosphere. Copyright 2010 by the American Geophysical Union
Multi-instrumental analysis of large sprite events and of their producing storm in southwestern France
During the night of 01-02 September, 2009, several TLEs including 3 halos and 16 distinct sprites were observed above a storm in north-western Mediterranean Sea with a camera at Pic du Midi (42.93° N, 0.14° E, 2877 m). Some of the sprites were especially large with vertical and horizontal extension estimated at about 70 km and 80 km, respectively. The TLE sequence lasted about one hour during a storm which developed 9 hours earlier over northern Spain in a very unstable atmosphere (CAPE at about 2000 J kg-1). The storm was characterized by a very circular shape and a size of about 250×250 km2 (cloud top temperature lower than -30°C) when the TLEs were produced (0209-0307 UT). The cloud to ground (CG) flash rate was large (45 min-1) one hour before the first TLE was detected and very low ( 5 ms) was observed for the electric field in ELF range in the cases of the very large sprites. Data from a VLF receiver shows the association between large sprites and early VLF signal perturbations.Postprint (published version
EUSO-SPB1 mission and science
The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆ 3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search
Measurement of UV light emission of the nighttime Earth by Mini-EUSO for space-based UHECR observations
The JEM-EUSO (Joint Experiment Missions for Extreme Universe Space Observatory) program aims at the realization of the ultra-high energy cosmic ray (UHECR) observation using wide field of view fluorescence detectors in orbit. Ultra-violet (UV) light emission from the atmosphere such as airglow and anthropogenic light on the Earth\u27s surface are the main background for the space-based UHECR observations. The Mini-EUSO mission has been operated on the International Space Station (ISS) since 2019 which is the first space-based experiment for the program. The Mini-EUSO instrument consists of a 25 cm refractive optics and the photo-detector module with the 2304-pixel array of the multi-anode photomultiplier tubes. On the nadir-looking window of the ISS, the instrument is capable of continuously monitoring a ~300 km x 300 km area. In the present work, we report the preliminary result of the measurement of the UV light in the nighttime Earth using the Mini-EUSO data downlinked to the ground. We mapped UV light distribution both locally and globally below the ISS obit. Simulations were also made to characterize the instrument response to diffuse background light. We discuss the impact of such light on space-based UHECR observations and the Mini-EUSO science objectives
EUSO-SPB2 Telescope Optics and Testing
The Extreme Universe Space Observatory - Super Pressure Balloon (EUSO-SPB2) mission will fly two custom telescopes that feature Schmidt optics to measure Cherenkov- and fluorescence emission of extensive air showers from cosmic rays at the PeV and EeV-scale, and search for τ-neutrinos. Both telescopes have 1-meter diameter apertures and UV/UV-visible sensitivity. The Cherenkov telescope uses a bifocal mirror segment alignment, to distinguish between a direct cosmic ray that hits the camera versus the Cherenkov light from outside the telescope. Telescope integration and laboratory calibration will be performed in Colorado. To estimate the point spread function and efficiency of the integrated telescopes, a test beam system that delivers a 1-meter diameter parallel beam of light is being fabricated. End-to-end tests of the fully integrated instruments will be carried out in a field campaign at dark sites in the Utah desert using cosmic rays, stars, and artificial light sources. Laser tracks have long been used to characterize the performance of fluorescence detectors in the field. For EUSO-SPB2 an improvement in the method that includes a correction for aerosol attenuation is anticipated by using a bi-dynamic Lidar configuration in which both the laser and the telescope are steerable. We plan to conduct these field tests in Fall 2021 and Spring 2022 to accommodate the scheduled launch of EUSO-SPB2 in 2023 from Wanaka, New Zealand
Simulation studies for the Mini-EUSO detector
Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modeled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyze the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 10 eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterization of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources