53 research outputs found

    Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low Earth orbit

    Get PDF
    Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility

    Flow Boiling and Condensation Experiment Flight Hardware Development

    Get PDF
    The Flow Boiling and Condensation Experiment (FBCE) to be manifested on the International Space Station (ISS) consists of a fluid system and the associated electronics to provide for conditioning the test fluid (normal-PerFluorohexane or nPFH-C6F14) to the proper thermodynamic state prior to entering a test module, which can be interchangeable based on the science objectives. Two separate test modules have been manufactured for the FBCE, the Flow Boiling Module (FBM), which investigates flow boiling for a subcooled liquid, saturated liquid, or two phase mixture, and the Condensation Module Heat Transfer (CM-HT), which investigates condensation of a flowing saturated or superheated vapor. The test fluid heating is accomplished using the Bulk Heater Module (BHM), which heats the fluid to various states based on the demands of the currently installed test module. ISS Internal Thermal Control System (ITCS) water is utilized to cool the test fluid prior to entering the circulation pump, and is also utilized for cooling for condensation in CM-HT, for cooling of a camera in FBM. An adjustable pressure bellows-type accumulator is used to set the pressure at the inlet of the test section, but does not provide active pressure control during testing. The flow of the test fluid is achieved using a gear pump controlled by a coriolis flow meter, which also provides the flow rate measurement. Flow rates for the ITCS water loops are measured and controlled using coriolis flow meters with directly controlled proportional valves. During execution of FBCE operations, the FBM is scheduled to collect data for three months before being exchanged with CM-HT for another three month data collection run. In this work, we present the development of the flight hardware, the associated challenges experienced during the development such as packaging flight system hardware, and the lessons learned in overcoming the encountered challenges

    Orion Spacecraft MMOD Protection Design and Assessment

    Get PDF
    The Orion spacecraft will replace the Space Shuttle Orbiter for American and international partner access to the International Space Station by 2015 and, afterwards, for access to the moon for initial sorties and later for extended outpost visits as part of the Constellation Exploration Initiative. This work describes some of the efforts being undertaken to ensure that the Constellation Program, Orion Crew Exploration Vehicle design will meet or exceed the stringent micrometeoroid and orbital debris (MMOD) requirements set out by NASA when exposed to the environments encountered with these missions. This paper will provide a brief overview of the approaches being used to provide MMOD protection to the Orion vehicle and to assess the spacecraft for compliance to the Constellation Program s MMOD requirements

    A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid

    Get PDF
    Amines are a fundamentally important class of biologically active compounds and the ability to manipulate their physicochemical properties through the introduction of fluorine is of paramount importance in medicinal chemistry. Current synthesis methods for the construction of fluorinated amines rely on air and moisture sensitive reagents that require special handling or harsh reductants that limit functionality. Here we report practical, catalyst-free, reductive trifluoroethylation reactions of free amines exhibiting remarkable functional group tolerance. The reactions proceed in conventional glassware without rigorous exclusion of either moisture or oxygen, and use trifluoroacetic acid as a stable and inexpensive fluorine source. The new methods provide access to a wide range of medicinally-relevant functionalized tertiary beta-fluoroalkylamine cores, either through direct trifluoroethylation of secondary amines or via a three-component coupling of primary amines, aldehydes and trifluoroacetic acid. A reduction of in situ-generated silyl ester species is proposed to account for the reductive selectivity observed

    In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents

    Get PDF
    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents

    Design of price incentives for adjunct policy goals in formula funding for hospitals and health services

    Get PDF
    Background. Hospital policy involves multiple objectives: efficiency of service delivery, pursuit of high quality care, promoting access. Funding policy based on hospital casemix has traditionally been considered to be only about promoting efficiency. Discussion. Formula-based funding policy can be (and has been) used to pursue a range of policy objectives, not only efficiency. These are termed 'adjunct' goals. Strategies to incorporate adjunct goals into funding design must, implicitly or explicitly, address key decision choices outlined in this paper. Summary. Policy must be clear and explicit about the behaviour to be rewarded; incentives must be designed so that all facilities with an opportunity to improve have an opportunity to benefit; the reward structure is stable and meaningful; and the funder monitors performance and gaming

    Increased indoleamine-2,3-dioxygenase activity is associated with poor clinical outcome in adults hospitalized with influenza in the INSIGHT FLU003Plus study

    Get PDF
    BACKGROUND: Indoleamine-2,3-dioxygenase (IDO) mediated tryptophan (TRP) depletion has antimicrobial and immuno-regulatory effects. Increased kynurenine (KYN)-to-TRP (KT) ratios, reflecting increased IDO activity, have been associated with poorer outcomes from several infections. METHODS: We performed a case-control (1:2; age and sex matched) analysis of adults hospitalized with influenza A(H1N1)pdm09 with protocol-defined disease progression (died/transferred to ICU/mechanical ventilation) after enrollment (cases) or survived without progression (controls) over 60 days of follow-up. Conditional logistic regression was used to analyze the relationship between baseline KT ratio and other metabolites and disease progression. RESULTS: We included 32 cases and 64 controls with a median age of 52 years; 41% were female, and the median durations of influenza symptoms prior to hospitalization were 8 and 6 days for cases and controls, respectively (P = .04). Median baseline KT ratios were 2-fold higher in cases (0.24 mM/M; IQR, 0.13-0.40) than controls (0.12; IQR, 0.09-0.17; P ≤ .001). When divided into tertiles, 59% of cases vs 20% of controls had KT ratios in the highest tertile (0.21-0.84 mM/M). When adjusted for symptom duration, the odds ratio for disease progression for those in the highest vs lowest tertiles of KT ratio was 9.94 (95% CI, 2.25-43.90). CONCLUSIONS: High KT ratio was associated with poor outcome in adults hospitalized with influenza A(H1N1)pdm09. The clinical utility of this biomarker in this setting merits further exploration. CLINICALTRIALSGOV IDENTIFIER: NCT01056185

    Systematic review: Effects, design choices, and context of pay-for-performance in health care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pay-for-performance (P4P) is one of the primary tools used to support healthcare delivery reform. Substantial heterogeneity exists in the development and implementation of P4P in health care and its effects. This paper summarizes evidence, obtained from studies published between January 1990 and July 2009, concerning P4P effects, as well as evidence on the impact of design choices and contextual mediators on these effects. Effect domains include clinical effectiveness, access and equity, coordination and continuity, patient-centeredness, and cost-effectiveness.</p> <p>Methods</p> <p>The systematic review made use of electronic database searching, reference screening, forward citation tracking and expert consultation. The following databases were searched: Cochrane Library, EconLit, Embase, Medline, PsychINFO, and Web of Science. Studies that evaluate P4P effects in primary care or acute hospital care medicine were included. Papers concerning other target groups or settings, having no empirical evaluation design or not complying with the P4P definition were excluded. According to study design nine validated quality appraisal tools and reporting statements were applied. Data were extracted and summarized into evidence tables independently by two reviewers.</p> <p>Results</p> <p>One hundred twenty-eight evaluation studies provide a large body of evidence -to be interpreted with caution- concerning the effects of P4P on clinical effectiveness and equity of care. However, less evidence on the impact on coordination, continuity, patient-centeredness and cost-effectiveness was found. P4P effects can be judged to be encouraging or disappointing, depending on the primary mission of the P4P program: supporting minimal quality standards and/or boosting quality improvement. Moreover, the effects of P4P interventions varied according to design choices and characteristics of the context in which it was introduced.</p> <p>Future P4P programs should (1) select and define P4P targets on the basis of baseline room for improvement, (2) make use of process and (intermediary) outcome indicators as target measures, (3) involve stakeholders and communicate information about the programs thoroughly and directly, (4) implement a uniform P4P design across payers, (5) focus on both quality improvement and achievement, and (6) distribute incentives to the individual and/or team level.</p> <p>Conclusions</p> <p>P4P programs result in the full spectrum of possible effects for specific targets, from absent or negligible to strongly beneficial. Based on the evidence the review has provided further indications on how effect findings are likely to relate to P4P design choices and context. The provided best practice hypotheses should be tested in future research.</p

    Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    No full text
    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed
    • …
    corecore