35 research outputs found

    Longitudinal development of visual working memory precision in childhood and early adolescence

    Get PDF
    © 2016. Visual working memory (VWM) is the ability to hold in mind visual information for brief periods of time. The current study investigated VWM precision development longitudinally. Participants (N = 40, aged 7-11 years) completed delayed reproduction sequential VWM tasks at baseline and two years later. Results show age-related improvement in recall precision on both 1-item and 3-item VWM tasks, suggesting development during childhood and early adolescence in the resolution with which both single and multiple items are stored in VWM. Probabilistic modelling of response distribution data suggests age-related improvement in precision is attributable to a specific decrease in the variability (noisiness) of stored feature representations. This highlights a novel developmental mechanism which may underlie longitudinal improvement in VWM performance, crucially without invoking improvement in the number of items that can be stored. VWM precision provides a sensitive metric with which to track developmental changes longitudinally, shedding light on underlying cognitive mechanisms

    The Role of Perceptual Load in Object Recognition

    Get PDF
    Predictions from perceptual load theory (Lavie, 19952005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were unaffected by a change in the distracter object view under conditions of low perceptual load. These results were found both with repetition priming measures of distracter recognition and with performance on a surprise recognition memory test. The results support load theory proposals that distracter recognition critically depends on the level of perceptual load. The implications for the role of attention in object recognition theories are discussed

    The Effect of Eight Weeks of High Intensity Interval Training on Genes Expression of eNOS, HIF-1 and VEGF in Myocardial Infarction Rats

    Get PDF
    Introduction: Myocardial infarction is cell death in part of the myocardialduring an ischemia. Cell death process in response to activity and appropriate intensity is not clear yet. Therefore, the aim of this study was to evaluate the effect of eight weeks of high intensity interval training on endothelial constitutive nitric oxide synthase, hypoxia-induced factor-1 and vascular endothelial growth factor in rats with myocardial infarction. Methods: 12 male Wistar rats weighing 250 to 300 grams were assigned into two groups: the experimental group (60 minutes running on a treadmill on an interval basis, each interval four minutes with intensity of 85-90 and two minutes of active recovery with 50- 60 % VO2max, Four days a week for eight weeks) and the control group (without training intervention). Genes expression were investigated by the PCR technique. Data were analyzed using SPSS (version 18) with Independent sample t-test (p≤0.05). Results: The results showed that endothelial constitutive nitric oxide synthase in high intensity interval training group (4.755) was significantly higher than the control group (3.615) (p= 0.012), hypoxia-induced factor in high intensity interval training group (9.015) was significantly higher than control group (1.49) (p= 0.001) and vascular endothelial growth factor in high intensity interval training group (6.855) was significantly higher than control group (1.425) (p= 0.001). Conclusion: Generally, eight weeks of high intensity interval training with increasing endothelial constitutive nitric oxide synthase and hypoxia- induced factor- 1 increased vascular endothelial growth factor and eventually increased angiogenesis and improved cardiac function in male rats after myocardial infarction

    The role of perceptual load in object recognition

    Get PDF
    Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were unaffected by a change in the distracter object view under conditions of low perceptual load. These results were found both with repetition priming measures of distracter recognition and with performance on a surprise recognition memory test. The results support load theory proposals that distracter recognition critically depends on the level of perceptual load. The implications for the role of attention in object recognition theories are discussed

    Gamma oscillations modulate working memory recall precision

    Get PDF
    Working memory (WM)—the ability to keep information in mind for short periods of time—is linked to attention and inhibitory abilities, i.e., the capacity to ignore task-irrelevant information. These abilities have been associated with brain oscillations, especially parietal gamma and alpha bands, but it is yet unknown whether these oscillations also modulate attention and inhibitory abilities. To test this, we compared parietal gamma-transcranial alternating current stimulation (tACS) to alpha-tACS and to a non-stimulation condition (Sham) in 51 young participants. Stimulation was coupled with a WM task probing memory-based attention and inhibitory abilities by means of probabilistic retrospective cues, including informative (valid), uninformative (invalid) and neutral. Our results show that relative to alpha and sham stimulation, parietal gamma-tACS significantly increased working memory recall precision. Additional post hoc analyses also revealed strong individual variability before and following stimulation; low-baseline performers showed no significant changes in performance following both gamma and alpha-tACS relative to sham. In contrast, in high-baseline performers gamma- (but not alpha) tACS selectively and significantly improved misbinding-feature errors as well as memory precision, particularly in uninformative (invalid) cues which rely more strongly on attentional abilities. We concluded that parietal gamma oscillations, therefore, modulate working memory recall processes, although baseline performance may further influence the effect of stimulation

    Dissociable effects of mild COVID-19 on short- and long-term memories

    Get PDF
    Recent studies have highlighted the presence of cognitive deficits following COVID-19 that persist beyond acute infection, regardless of the initial disease severity. Impairments in short- and long-term memory are among the core deficits reported by patients and observed in objective tests of memory performance. We aimed to extend previous studies by examining performance in a task that allows us to directly compare and contrast memories at different timescales. More specifically, we assessed both short- and long-term memories for contextual–spatial associations encoded during a common session and probed at different durations using an equivalent task in non-hospitalized individuals recovering from mild COVID-19 compared to healthy controls. The approach equated all aspects of memory materials and response demands, isolating performance changes resulting only from memory timescales and thus allowing us to quantify the impact of COVID-19 on cognition. In addition to providing measures of accuracy and response times, the task also provided a sensitive continuous readout of the precision of memory representations, specifically by examining the resolution with which spatial locations were retained in memory. The results demonstrated selective impairment of long-term memory performance in individuals recovering from mild COVID-19 infection. Short-term memory performance remained comparable to healthy controls. Specifically, poor precision of long-term memory representations was demonstrated, which improved with days since diagnosis. No such relationship was observed for short-term memory performance. Our findings reveal a specific impairment to the precision of spatial–contextual long-term memory representations in individuals recovering from mild COVID-19 and demonstrate evidence of recovery in long-term memory over time. Further, the experimental design provides a carefully controlled and sensitive framework to assess memory across different durations with the potential to provide more detailed phenotyping of memory deficits associated with COVID-19 in general

    A new toolbox to distinguish the sources of spatial memory error

    Get PDF
    Studying the sources of errors in memory recall has proven invaluable for understanding the mechanisms of working memory (WM). While one-dimensional memory features (e.g. colour, orientation) can be analysed using existing mixture modelling toolboxes to separate the influence of imprecision, guessing, and misbinding (the tendency to confuse features that belong to different memoranda), such toolboxes are not currently available for two-dimensional spatial WM tasks. Here we present a method to isolate sources of spatial error in tasks where participants have to report the spatial location of an item in memory, using two-dimensional mixture models. The method recovers simulated parameters well, and is robust to the influence of response distributions and biases, and number of non-targets and trials. To demonstrate the model, we fit data from a complex spatial WM task, and show the recovered parameters correspond well with previous spatial WM findings, and with recovered parameters on a one-dimensional analogue of this task, suggesting convergent validity for this two-dimensional modelling approach. Because the extra dimension allows greater separation of memoranda and responses, spatial tasks turn out to be much better for separating misbinding from imprecision and guessing than one-dimensional tasks. Code for these models is freely available in the MemToolbox2D package and is integrated to work with the commonly used Matlab package MemToolbox

    Task-irrelevant financial losses inhibit the removal of information from working memory

    Get PDF
    Abstract The receipt of financial rewards or penalties - though task-irrelevant - may exert an obligatory effect on manipulating items in working memory (WM) by constraining a forthcoming shift in attention or reinforcing attentional shifts that have previously occurred. Here, we adjudicate between these two hypotheses by varying – after encoding- the order in which task-irrelevant financial outcomes and cues indicating which items need to be retained in memory are presented (so called retrocues). We employed a “what-is-where” design that allowed for the fractionation of WM recall into separate components: identification, precision and binding (between location and identity). Principally, valence-dependent effects were observed only for precision and binding, but only when outcomes were presented before, rather than after, the retrocue. Specifically, task-irrelevant financial losses presented before the retrocue caused a systematic breakdown in binding (misbinding), whereby the features of cued and non-cued memoranda became confused, i.e., the features that made up relevant memoranda were displaced by those of non-cued (irrelevant) items. A control experiment, in which outcomes but no cues were presented, failed to produce the same effects, indicating that the inclusion of retrocues were necessary for generating this effect. These results show that the receipt of financial penalties – even when uncoupled to performance – can prevent irrelevant information from being effectively pruned from WM. These results illustrate the importance of reward-related processing to controlling the contents of WM

    Cathodal Transcranial Direct Current Stimulation over Posterior Parietal Cortex enhances distinct aspects of Visual Working Memory

    Get PDF
    In this study, we investigated the effects of tDCS over the posterior parietal cortex (PPC) during a visual working memory (WM) task, which probes different sources of response error underlying the precision of WM recall. In two separate experiments, we demonstrated that tDCS enhanced WM precision when applied bilaterally over the PPC, independent of electrode configuration. In a third experiment, we demonstrated with unilateral electrode configuration over the right PPC, that only cathodal tDCS enhanced WM precision and only when baseline performance was low. Looking at the effects on underlying sources of error, we found that cathodal stimulation enhanced the probability of correct target response across all participants by reducing feature-misbinding. Only for low-baseline performers, cathodal stimulation also reduced variability of recall. We conclude that cathodal- but not anodal tDCS can improve WM precision by preventing feature-misbinding and hereby enhancing attentional selection. For low-baseline performers, cathodal tDCS also protects the memory trace. Furthermore, stimulation over bilateral PPC is more potent than unilateral cathodal tDCS in enhancing general WM precision
    corecore