6 research outputs found
Low-Temperature X-ray Crystal Structure Analysis of the Cage-Structured Compounds MBe13 (M = La, Sm, and U)
The beryllides MBe13 (M = rare earths and actinides) crystallize in a
NaZn13-type cubic structure, which can be categorized as a cage-structured
compound. In this study, powder X-ray diffraction measurements have been
performed on LaBe13, SmBe13, and UBe13 in the temperature range between 7 and
300 K in order to investigate their crystallographic characteristics
systematically. They keep the NaZn13-type cubic structure down to the lowest
temperature. We estimated their Debye temperature to be 600 - 750 K from
analyses of the temperature dependence of a lattice parameter, being in good
agreement with the values reported previously. Rietveld refinements on the
obtained powder patterns revealed that the M atom in the 8a site is located in
an almost ideal snub cube formed by 24 Be atoms in the 96i site, whose caged
structure is unchanged even at the low temperatures. In addition, it is argued
from the temperature variation of an isotropic mean-square displacement
parameter that the MBe13 compounds commonly have a low-energy phonon mode,
which can be described by a model assuming an Einstein oscillation of the M
atom with a characteristic temperature of ~ 160 K.Comment: 8 pages with 6 figures and 2 table
Non-coding RNA suppresses FUS aggregation caused by mechanistic shear stress on pipetting in a sequence-dependent manner
Fused in sarcoma/translocated in liposarcoma (FUS/TLS) is a multitasking RNA/DNA binding protein. FUS aggregation is implicated in various neurodegenerative diseases. RNA was suggested to modulate phase transition of FUS. Here, we found that FUS transforms into the amorphous aggregation state as an instant response to the shear stress caused by usual pipetting even at a low FUS concentration, 100 nM. It was revealed that non-coding RNA can suppress the transformation of FUS into aggregates. The suppressive effect of RNA on FUS aggregation is sequence-dependent. These results suggested that the non-coding RNA could be a prospective suppressor of FUS aggregation caused by mechanistic stress in cells. Our finding might pave the way for more research on the role of RNAs as aggregation inhibitors, which could facilitate the development of therapies for neurodegenerative diseases
The binding specificity of Translocated in LipoSarcoma/FUsed in Sarcoma with lncRNA transcribed from the promoter region of cyclin D1
Background: Translocated in LipoSarcoma (TLS, also known as FUsed in Sarcoma) is an RNA/DNA binding protein whose mutation cause amyotrophic lateral sclerosis. In previous study, we demonstrated that TLS binds to long noncoding RNA, promoter-associated ncRNA-D (pncRNA-D), transcribed from the 5' upstream region of cyclin D1 (CCND1), and inhibits the expression of CCND1. Results: In order to elucidate the binding specificity between TLS and pncRNA-D, we divided pncRNA-D into seven fragments and examined the binding with full-length TLS, TLS-RGG2-zinc finger-RGG3, and TLS-RGG3 by RNA pull down assay. As a result, TLS was able to bind to all the seven fragments, but the fragments containing reported recognition motifs (GGUG and GGU) tend to bind more solidly. The full-length TLS and TLS-RGG2-zinc finger-RGG3 showed a similar interaction with pncRNA-D, but the binding specificity of TLS-RGG3 was lower compared to the full-length TLS and TLS-RGG2-zinc finger-RGG3. Mutation in GGUG and GGU motifs dramatically decreased the binding, and unexpectedly, we could only detect weak interaction with the RNA sequence with stem loop structure. Conclusion: The binding of TLS and pncRNA-D was affected by the presence of GGUG and GGU sequences, and the C terminal domains of TLS function in the interaction with pncRNA-D
Low-temperature x-ray crystal structure analysis of the cage-structured compounds MBe13 (M = La, Sm, and U)
The beryllides MBe13 (M = rare earths and actinides) crystallize in a NaZn13-type cubic structure, which can be categorized as a cage-structured compound. In this study, powder X-ray diffraction measurements have been performed on LaBe13, SmBe13, and UBe13 in the temperature range between 7 and 300 K in order to investigate their crystallographic characteristics systematically. They keep the NaZn13-type cubic structure down to the lowest temperature. We estimated their Debye temperature to be 600–750 K from analyses of the temperature dependence of a lattice parameter, being in good agreement with the values reported previously. Rietveld refinements on the obtained powder patterns revealed that the M atom in the 8a site is located in an almost ideal snub cube formed by 24 Be(II) atoms in the 96i site, whose caged structure is unchanged even at the low temperatures. In addition, it is argued from the temperature variation of an isotropic mean-square displacement parameter that the MBe13 compounds commonly have a low-energy phonon mode, which can be described by a model assuming an Einstein oscillation of the M atom with a characteristic temperature of ~ 160 K
Non-coding RNA suppresses FUS aggregation caused by mechanistic shear stress on pipetting in a sequence-dependent manner
Fused in sarcoma/translocated in liposarcoma (FUS/TLS) is a multitasking RNA/DNA binding protein. FUS aggregation is implicated in various neurodegenerative diseases. RNA was suggested to modulate phase transition of FUS. Here, we found that FUS transforms into the amorphous aggregation state as an instant response to the shear stress caused by usual pipetting even at a low FUS concentration, 100 nM. It was revealed that non-coding RNA can suppress the transformation of FUS into aggregates. The suppressive effect of RNA on FUS aggregation is sequence-dependent. These results suggested that the non-coding RNA could be a prospective suppressor of FUS aggregation caused by mechanistic stress in cells. Our finding might pave the way for more research on the role of RNAs as aggregation inhibitors, which could facilitate the development of therapies for neurodegenerative diseases