2,635 research outputs found

    Discovery of orbital decay in SMC X-1

    Get PDF
    The results are reported of three observations of the binary X ray pulsar SMC X-1 with the Ginga satellite. Timing analyses of the 0.71 s X ray pulsations yield Doppler delay curves which, in turn, provide the most accurate determination of the SMC X-1 orbital parameters available to date. The orbital phase of the 3.9 day orbit is determined in May 1987, Aug. 1988, and Aug. 1988 with accuracies of 11, 1, and 3.5 s, respectively. These phases are combined with two previous determinations of the orbital phase to yield the rate of change in the orbital period: P sub orb/P sub orb = (-3.34 + or - 0.023) x 10(exp -6)/yr. An interpretation of this measurement and the known decay rate for the orbit of Cen X-3 is made in the context of tidal evolution. Finally, a discussion is presented of the relation among the stellar evolution, orbital decay, and neutron star spinup time scales for the SMC X-1 system

    The Distribution of X-ray Dips with Orbital Phase in Cygnus X-1

    Full text link
    We present results of a comprehensive study of the distribution of absorption dips with orbital phase in Cygnus X-1. Firstly, the distribution was obtained using archival data from all major X-ray observatories and corrected for the selection effect that phase zero (superior conjunction of the black hole) has been preferentially observed. Dip occurrence was seen to vary strongly with orbital phase \phi, with a peak at \phi ~ 0.95, i.e. was not symmetric about phase zero. Secondly, the RXTE ASM has provided continuous coverage of the Low State of Cygnus X-1 since Sept. 1996, and we have selected dip data based on increases in hardness ratio. The distribution, with much increased numbers of dip events, confirms that the peak is at \phi ~ 0.95, and we report the discovery of a second peak at \phi ~ 0.6. We attribute this peak to absorption in an accretion stream from the companion star HDE 226868. We have estimated the ionization parameter at different positions showing that radiative acceleration of the wind is suppressed by photoionization in particular regions in the binary system. To obtain the variation of column density with phase, we make estimates of neutral wind density for the extreme cases that acceleration of the wind is totally suppressed, or not suppressed at all. An accurate description will lie between these extremes. In each case, a strong variation of column density with orbital phase resulted, similar to the variation of dip occurrence. This provides evidence that formation of the blobs in the wind which lead to absorption dips depends on the density of the neutral component in the wind, suggesting possible mechanisms for blob growth.Comment: 9 pages, Latex, 7 ps figures. accepted by MNRA

    Correlation between X-ray flux and rotational acceleration in Vela X-1

    Get PDF
    The results of a search for correlations between X-ray flux and angular acceleration for the accreting binary pulsar Vela X-1 are presented. Results are based on data obtained with the Hakucho satellite during the interval 1982 to 1984. In undertaking this correlation analysis, it was necessary to modify the usual statistical method to deal with conditions imposed by generally unavoidable satellite observing constraints, most notably a mismatch in sampling between the two variables. The results are suggestive of a correlation between flux and the absolute value of the angular acceleration, at a significance level of 96 percent. The implications of the methods and results for future observations and analysis are discussed

    Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons

    Full text link
    Low-energy electron microscopy (LEEM) was used to measure the reflectivity of low-energy electrons from graphitized SiC(0001). The reflectivity shows distinct quantized oscillations as a function of the electron energy and graphite thickness. Conduction bands in thin graphite films form discrete energy levels whose wave vectors are normal to the surface. Resonance of the incident electrons with these quantized conduction band states enhances electrons to transmit through the film into the SiC substrate, resulting in dips in the reflectivity. The dip positions are well explained using tight-binding and first-principles calculations. The graphite thickness distribution can be determined microscopically from LEEM reflectivity measurements.Comment: 7 pages, 3 figure

    Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking

    Full text link
    We report the experimental demonstration of a transmission scheme of photonic qubits over unstabilized optical fibers, which has the plug-and-play feature as well as the ability to transmit any state of a qubit, regardless of whether it is known, unknown, or entangled to other systems. A high fidelity to the noiseless quantum channel was achieved by adding an ancilla photon after the signal photon within the correlation time of the fiber noise and by performing quantum parity checking. Simplicity, maintenance-free feature and robustness against path-length mismatches among the nodes make our scheme suitable for multi-user quantum communication networks.Comment: 8 pages, 4 figures; published in New J. Phys. and selected in IOP Selec

    An X-Ray Dip in the X-Ray Transient 4U 1630-47

    Full text link
    An x-ray dip was observed during a 1996 Rossi X-Ray Timing Explorer observation of the recurrent x-ray transient 4U 1630-47. During the dip, the 2-60 keV x-ray flux drops by a factor of about three, and, at the lowest point of the dip, the x-ray spectrum is considerably softer than at non-dip times. We find that the 4U 1630-47 dip is best explained by absorption of the inner part of an accretion disk, while the outer part of the disk is unaffected. The spectral evolution during the dip is adequately described by the variation of a single parameter, the column density obscuring the inner disk.Comment: 13 pages, 4 figures, Accepted for publication in Ap

    Spectral properties of the X-ray binary pulsar LMC X-4 during different intensity states

    Get PDF
    We present spectral variations of the binary X-ray pulsar LMC X-4 observed with the RXTE/PCA during different phases of its 30.5 day long third period. Only out of eclipse data were used for this study. The 3-25 keV spectrum, modeled with high energy cut-off power-law and iron line emission is found to show strong dependence on the intensity state. Correlations between the Fe line emission flux and different parameters of the continuum are presented here.Comment: 4 pages, 4 figure

    Study of the cyclotron feature in MXB 0656-072

    Get PDF
    We have monitored a type II outburst of the Be/X-ray binary MXB 0656−072 in a series of pointed RXTE observations during October through December 2003. The source spectrum shows a cyclotron resonance scattering feature at 32.8 +0.5 −0.4 keV, corresponding to a magnetic field strength of 3.67 +0.06 −0.04 × 10 12 G and is stable through the outburst and over the pulsar spin phase. The pulsar, with an average pulse period of 160.4 ± 0.4s,shows a spin-up of 0.45 s over the duration of the outburst. From optical data, the source distance is estimated to be 3.9 ± 0.1 kpc and this is used to estimate the X-ray luminosity and a theoretical prediction of the pulsar spin-up during the outburst
    corecore