2,776 research outputs found
Group theoretical study of LOCC-detection of maximally entangled state using hypothesis testing
In the asymptotic setting, the optimal test for hypotheses testing of the
maximally entangled state is derived under several locality conditions for
measurements. The optimal test is obtained in several cases with the asymptotic
framework as well as the finite-sample framework. In addition, the experimental
scheme for the optimal test is presented
Radiation monitoring container device (16-IML-1)
In this experiment, layers of radiation detectors and biological specimens, bacterial spores (Bacillus subtillis), shrimp eggs (Altemia salina), and maize seeds (Zea mays) are sandwiched together in the Radiation Monitoring Container. The detectors, sheets of plastic materials, record the nuclear track of cosmic radiation. The dosimeter package contains conventional detectors made of materials such as lithium fluoride or magnesium-silica-terbium. The thermoluminescent materials (TLD) will, when moderately heated, emit luminescent photons linearly depending upon the dose of radiation received. The experiment, enclosed in a box-like container, is mounted on the aft end cone of the Spacelab, the area where the shielding is somewhat less than other locations
Adaptive experimental design for one-qubit state estimation with finite data based on a statistical update criterion
We consider 1-qubit mixed quantum state estimation by adaptively updating
measurements according to previously obtained outcomes and measurement
settings. Updates are determined by the average-variance-optimality
(A-optimality) criterion, known in the classical theory of experimental design
and applied here to quantum state estimation. In general, A-optimization is a
nonlinear minimization problem; however, we find an analytic solution for
1-qubit state estimation using projective measurements, reducing computational
effort. We compare numerically two adaptive and two nonadaptive schemes for
finite data sets and show that the A-optimality criterion gives more precise
estimates than standard quantum tomography.Comment: 15 pages, 7 figure
Macroscopic thermodynamic reversibility in quantum many-body systems
The resource theory of thermal operations, an established model for small-scale thermodynamics, provides an extension of equilibrium thermodynamics to nonequilibrium situations. On a lattice of any dimension with any translation-invariant local Hamiltonian, we identify a large set of translation-invariant states that can be reversibly converted to and from the thermal state with thermal operations and a small amount of coherence. These are the spatially ergodic states, i.e., states that have sharp statistics for any translation-invariant observable, and mixtures of such states with the same thermodynamic potential. As an intermediate result, we show for a general state that if the gap between the min- and the max-relative entropies to the thermal state is small, then the state can be approximately reversibly converted to and from the thermal state with thermal operations and a small source of coherence. Our proof provides a quantum version of the Shannon-McMillan-Breiman theorem for the relative entropy and a quantum Stein’s lemma for ergodic states and local Gibbs states. Our results provide a strong link between the abstract resource theory of thermodynamics and more realistic physical systems as we achieve a robust and operational characterization of the emergence of a thermodynamic potential in translation-invariant lattice systems
Reassessing the Role of APOBEC3G in Human Immunodeficiency Virus Type 1 Infection of Quiescent CD4+ T-Cells
HIV-1 is restricted for infection of primary quiescent T-cells. After viral entry, reverse transcription is initiated but is not completed. Various hypotheses have been proposed for this cellular restriction including insufficient nucleotide pools and cellular factors, but none have been confirmed as the primary mechanism for restriction. A recent study by Chiu et al. implicates APOBEC3G, an anti-retroviral cytidine deaminase, as the cellular restriction factor. Here, we attempted to confirm these findings using the same strategy as reported by Chiu et al. of siRNA targeting knock-down of APOBEC3G expression. In contrast to the published study, our results do not support a role for APOBEC3G in restriction of HIV-1 in quiescent CD4+ T-cells. In our study, we tested the same siRNA as reported by Chiu et al. as well as two additional siRNAs targeting APOBEC3G, one of which showed 2-fold greater knock-down of APOBEC3G mRNA. However, none of the three siRNAs tested had a discernable effect on enhancing infection by HIV-1 in quiescent CD4+ T-cells. Therefore, we conclude that the primary mechanism of HIV-1 restriction in quiescent CD4+ T-cells remains to be elucidated
Asymptotic estimation theory for a finite dimensional pure state model
The optimization of measurement for n samples of pure sates are studied. The
error of the optimal measurement for n samples is asymptotically compared with
the one of the maximum likelihood estimators from n data given by the optimal
measurement for one sample.Comment: LaTeX, 23 pages, Doctoral Thesi
- …