4 research outputs found

    A chimeric haemagglutinin-based universal influenza virus vaccine boosts human cellular immune responses directed towards the conserved haemagglutinin stalk domain and the viral nucleoprotein

    Get PDF
    Background The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) −/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). Methods We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. Findings Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. Interpretation Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. Funding This study was funded in part by the Bill and Melinda Gates Foundation (BMGF)

    Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in adults in Africa: a randomised, observer-blind, placebo-controlled, phase 2 trial.

    Get PDF
    BACKGROUND: The 2014 Zaire Ebola virus disease epidemic accelerated vaccine development for the virus. We aimed to assess the safety, reactogenicity, and immunogenicity of one dose of monovalent, recombinant, chimpanzee adenovirus type-3 vectored Zaire Ebola glycoprotein vaccine (ChAd3-EBO-Z) in adults. METHODS: This phase 2, randomised, observer-blind, controlled trial was done in study centres in Cameroon, Mali, Nigeria, and Senegal. Healthy adults (≥18 years) were randomly assigned with a web-based system (1:1; minimisation procedure accounting for age, gender, centre) to receive ChAd3-EBO-Z (day 0), or saline placebo (day 0) and ChAd3-EBO-Z (month 6). The study was observer-blind until planned interim day 30 analysis, single-blind until month 6, and open-label after month 6 vaccination. Primary outcomes assessed in the total vaccinated cohort, which comprised all participants with at least one study dose administration documented, were serious adverse events (up to study end, month 12); and for a subcohort were solicited local or general adverse events (7 days post-vaccination), unsolicited adverse events (30 days post-vaccination), haematological or biochemical abnormalities, and clinical symptoms of thrombocytopenia (day 0-6). Secondary endpoints (subcohort; per-protocol cohort) evaluated anti-glycoprotein Ebola virus antibody titres (ELISA) pre-vaccination and 30 days post-vaccination. This study is registered with ClinicalTrials.gov, NCT02485301. FINDINGS: Between July 22, 2015, and Dec 10, 2015, 3030 adults were randomly assigned; 3013 were included in the total vaccinated cohort (1509 [50·1%] in the ChAd3-EBO-Z group and 1504 [49·9%] in the placebo/ChAd3-EBO-Z group), 17 were excluded because no vaccine was administered. The most common solicited injection site symptom was pain (356 [48%] of 748 in the ChAd3-EBO-Z group vs 57 [8%] of 751 in the placebo/ChAd3-EBO-Z group); the most common solicited general adverse event was headache (345 [46%] in the ChAd3-EBO-Z group vs 136 [18%] in the placebo/ChAd3-EBO-Z group). Unsolicited adverse events were reported by 123 (16%) of 749 in the ChAd3-EBO-Z group and 119 (16%) of 751 in the placebo/ChAd3-EBO-Z group. Serious adverse events were reported for 11 (1%) of 1509 adults in the ChAd3-EBO-Z group, and 18 (1%) of 1504 in the placebo/ChAd3-EBO-Z group; none were considered vaccination-related. No clinically meaningful thrombocytopenia was reported. At day 30, anti-glycoprotein Ebola virus antibody geometric mean concentration was 900 (95% CI 824-983) in the ChAd3-EBO-Z group. There were no treatment-related deaths. INTERPRETATION: ChAd3-EBO-Z was immunogenic and well tolerated in adults. Our findings provide a strong basis for future development steps, which should concentrate on multivalent approaches (including Sudan and Marburg strains). Additionally, prime-boost approaches should be a focus with a ChAd3-based vaccine for priming and boosted by a modified vaccinia Ankara-based vaccine. FUNDING: EU's Horizon 2020 research and innovation programme and GlaxoSmithKline Biologicals SA

    Meningococcal ACWYX Conjugate Vaccine in 2-to-29-Year-Olds in Mali and Gambia.

    No full text
    BACKGROUND: An effective, affordable, multivalent meningococcal conjugate vaccine is needed to prevent epidemic meningitis in the African meningitis belt. Data on the safety and immunogenicity of NmCV-5, a pentavalent vaccine targeting the A, C, W, Y, and X serogroups, have been limited. METHODS: We conducted a phase 3, noninferiority trial involving healthy 2-to-29-year-olds in Mali and Gambia. Participants were randomly assigned in a 2:1 ratio to receive a single intramuscular dose of NmCV-5 or the quadrivalent vaccine MenACWY-D. Immunogenicity was assessed at day 28. The noninferiority of NmCV-5 to MenACWY-D was assessed on the basis of the difference in the percentage of participants with a seroresponse (defined as prespecified changes in titer; margin, lower limit of the 96% confidence interval [CI] above -10 percentage points) or geometric mean titer (GMT) ratios (margin, lower limit of the 98.98% CI >0.5). Serogroup X responses in the NmCV-5 group were compared with the lowest response among the MenACWY-D serogroups. Safety was also assessed. RESULTS: A total of 1800 participants received NmCV-5 or MenACWY-D. In the NmCV-5 group, the percentage of participants with a seroresponse ranged from 70.5% (95% CI, 67.8 to 73.2) for serogroup A to 98.5% (95% CI, 97.6 to 99.2) for serogroup W; the percentage with a serogroup X response was 97.2% (95% CI, 96.0 to 98.1). The overall difference between the two vaccines in seroresponse for the four shared serogroups ranged from 1.2 percentage points (96% CI, -0.3 to 3.1) for serogroup W to 20.5 percentage points (96% CI, 15.4 to 25.6) for serogroup A. The overall GMT ratios for the four shared serogroups ranged from 1.7 (98.98% CI, 1.5 to 1.9) for serogroup A to 2.8 (98.98% CI, 2.3 to 3.5) for serogroup C. The serogroup X component of the NmCV-5 vaccine generated seroresponses and GMTs that met the prespecified noninferiority criteria. The incidence of systemic adverse events was similar in the two groups (11.1% in the NmCV-5 group and 9.2% in the MenACWY-D group). CONCLUSIONS: For all four serotypes in common with the MenACWY-D vaccine, the NmCV-5 vaccine elicited immune responses that were noninferior to those elicited by the MenACWY-D vaccine. NmCV-5 also elicited immune responses to serogroup X. No safety concerns were evident. (Funded by the U.K. Foreign, Commonwealth, and Development Office and others; ClinicalTrials.gov number, NCT03964012.)
    corecore