12 research outputs found

    Learning Graph Embeddings for Compositional Zero-shot Learning

    Get PDF
    In compositional zero-shot learning, the goal is to recognize unseen compositions (e.g. old dog) of observed visual primitives states (e.g. old, cute) and objects (e.g. car, dog) in the training set. This is challenging because the same state can for example alter the visual appearance of a dog drastically differently from a car. As a solution, we propose a novel graph formulation called Compositional Graph Embedding (CGE) that learns image features, compositional classifiers, and latent representations of visual primitives in an end-to-end manner. The key to our approach is exploiting the dependency between states, objects, and their compositions within a graph structure to enforce the relevant knowledge transfer from seen to unseen compositions. By learning a joint compatibility that encodes semantics between concepts, our model allows for generalization to unseen compositions without relying on an external knowledge base like WordNet. We show that in the challenging generalized compositional zero-shot setting our CGE significantly outperforms the state of the art on MIT-States and UT-Zappos. We also propose a new benchmark for this task based on the recent GQA dataset.Comment: Accepted in IEEE CVPR 202

    Learning to Prompt with Text Only Supervision for Vision-Language Models

    Full text link
    Foundational vision-language models such as CLIP are becoming a new paradigm in vision, due to their excellent generalization abilities. However, adapting these models for downstream tasks while maintaining their generalization remains a challenge. In literature, one branch of methods adapts CLIP by learning prompts using visual information. While effective, most of these works require labeled data which is not practical, and often struggle to generalize towards new datasets due to over-fitting on the source data. An alternative approach resorts to training-free methods by generating class descriptions from large language models (LLMs) and perform prompt ensembling. However, these methods often generate class specific prompts that cannot be transferred to other classes, which incur higher costs by generating LLM descriptions for each class separately. In this work, we propose to combine the strengths of these both streams of methods by learning prompts using only text data derived from LLMs. As supervised training of prompts is not trivial due to absence of images, we develop a training approach that allows prompts to extract rich contextual knowledge from LLM data. Moreover, with LLM contextual data mapped within the learned prompts, it enables zero-shot transfer of prompts to new classes and datasets potentially cutting the LLM prompt engineering cost. To the best of our knowledge, this is the first work that learns generalized prompts using text only data. We perform extensive evaluations on 4 benchmarks where our method improves over prior ensembling works while being competitive to those utilizing labeled images. Our code and pre-trained models are available at https://github.com/muzairkhattak/ProText.Comment: Project Page: https://muzairkhattak.github.io/ProText

    SemiVL: Semi-Supervised Semantic Segmentation with Vision-Language Guidance

    Full text link
    In semi-supervised semantic segmentation, a model is trained with a limited number of labeled images along with a large corpus of unlabeled images to reduce the high annotation effort. While previous methods are able to learn good segmentation boundaries, they are prone to confuse classes with similar visual appearance due to the limited supervision. On the other hand, vision-language models (VLMs) are able to learn diverse semantic knowledge from image-caption datasets but produce noisy segmentation due to the image-level training. In SemiVL, we propose to integrate rich priors from VLM pre-training into semi-supervised semantic segmentation to learn better semantic decision boundaries. To adapt the VLM from global to local reasoning, we introduce a spatial fine-tuning strategy for label-efficient learning. Further, we design a language-guided decoder to jointly reason over vision and language. Finally, we propose to handle inherent ambiguities in class labels by providing the model with language guidance in the form of class definitions. We evaluate SemiVL on 4 semantic segmentation datasets, where it significantly outperforms previous semi-supervised methods. For instance, SemiVL improves the state-of-the-art by +13.5 mIoU on COCO with 232 annotated images and by +6.1 mIoU on Pascal VOC with 92 labels. Project page: https://github.com/google-research/semiv

    SILC: Improving Vision Language Pretraining with Self-Distillation

    Full text link
    Image-Text pretraining on web-scale image caption datasets has become the default recipe for open vocabulary classification and retrieval models thanks to the success of CLIP and its variants. Several works have also used CLIP features for dense prediction tasks and have shown the emergence of open-set abilities. However, the contrastive objective used by these models only focuses on image-text alignment and does not incentivise image feature learning for dense prediction tasks. In this work, we introduce SILC, a novel framework for vision language pretraining. SILC improves image-text contrastive learning with the simple addition of local-to-global correspondence learning by self-distillation. We show that distilling local image features from an exponential moving average (EMA) teacher model significantly improves model performance on dense predictions tasks like detection and segmentation, while also providing improvements on image-level tasks such as classification and retrieval. SILC models sets a new state of the art for zero-shot classification, few shot classification, image and text retrieval, zero-shot segmentation, and open vocabulary segmentation. We further show that SILC features greatly benefit open vocabulary detection, captioning and visual question answering

    Learning Graph Embeddings for Compositional Zero-shot Learning

    No full text

    Open World Compositional Zero-Shot Learning

    No full text

    I2DFormer: Learning Image to Document Attention for Zero-Shot Image Classification

    No full text
    Despite the tremendous progress in zero-shot learning (ZSL), the majority of existing methods still rely on human-annotated attributes, which are difficult to annotate and scale. An unsupervised alternative is to represent each class using the word embedding associated with its semantic class name. However, word embeddings extracted from pre-trained language models do not necessarily capture visual similarities, resulting in poor zero-shot performance. In this work, we argue that online textual documents, e.g., Wikipedia, contain rich visual descriptions about object classes, therefore can be used as powerful unsupervised side information for ZSL. To this end, we propose I2DFormer, a novel transformer-based ZSL framework that jointly learns to encode images and documents by aligning both modalities in a shared embedding space. In order to distill discriminative visual words from noisy documents, we introduce a new cross-modal attention module that learns fine-grained interactions between image patches and document words. Consequently, our I2DFormer not only learns highly discriminative document embeddings that capture visual similarities but also gains the ability to localize visually relevant words in image regions. Quantitatively, we demonstrate that our I2DFormer significantly outperforms previous unsupervised semantic embeddings under both zero-shot and generalized zero-shot learning settings on three public datasets. Qualitatively, we show that our method leads to highly interpretable results where document words can be grounded in the image regions. Code available at https://github.com/ferjad/I2DFormer

    Reliable fidelity and diversity metrics for generative models

    No full text
    Devising indicative evaluation metrics for the image generation task remains an open problem. The most widely used metric for measuring the similarity between real and generated images has been the Fr??chet Inception Distance (FID) score. Because it does not differentiate the fidelity and diversity aspects of the generated images, recent papers have introduced variants of precision and recall metrics to diagnose those properties separately. In this paper, we show that even the latest version of the precision and recall metrics are not reliable yet; for example, they fail to detect the match between two identical distributions, they are not robust against outliers, and the evaluation hyperparameters are selected arbitrarily. We propose density and coverage metrics that solve the above issues. We analytically and experimentally show that density and coverage provide more interpretable and reliable signals for practitioners than the existing metrics
    corecore