128 research outputs found
Two long-period transiting exoplanets on eccentric orbits: NGTS-20 b (TOI-5152 b) and TOI-5153 b
Long-period transiting planets provide the opportunity to better understand
the formation and evolution of planetary systems. Their atmospheric properties
remain largely unaltered by tidal or radiative effects of the host star, and
their orbital arrangement reflects a different, and less extreme, migrational
history compared to close-in objects. The sample of long-period exoplanets with
well determined masses and radii is still limited, but a growing number of
long-period objects reveal themselves in the TESS data. Our goal is to vet and
confirm single transit planet candidates detected in the TESS space-based
photometric data through spectroscopic and photometric follow up observations
with ground-based instruments. We use the Next Generation Transit Survey (NGTS)
to photometrically monitor the candidates in order to observe additional
transits. We report the discovery of two massive, warm Jupiter-size planets,
one orbiting the F8-type star TOI-5153 and the other orbiting the G1-type star
NGTS-20 (=TOI-5152). From our spectroscopic analysis, both stars are metal-rich
with a metallicity of 0.12 and 0.15, respectively. Follow-up radial velocity
observations were carried out with CORALIE, CHIRON, FEROS, and HARPS. TOI-5153
hosts a 20.33 day period planet with a planetary mass of 3.26 (+-0.18) Mj, a
radius of 1.06 (+-0.04) Rj , and an orbital eccentricity of 0.091 (+-0.026).
NGTS-20 b is a 2.98 (+-0.16) Mj planet with a radius of 1.07 (+-0.04) Rj on an
eccentric (0.432 +- 0.023) orbit with an orbital period of 54.19 days. Both
planets are metal-enriched and their heavy element content is in line with the
previously reported mass-metallicity relation for gas giants. Both warm
Jupiters orbit moderately bright host stars making these objects valuable
targets for follow-up studies of the planetary atmosphere and measurement of
the spin-orbit angle of the system.Comment: 17 pages, 13 figures, accepted to A&
Age-Related Changes of Myelin Basic Protein in Mouse and Human Auditory Nerve
Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38–46 years (middle-aged group) and 6 adults aged 63–91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP+ auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis
An electron microscopic autoradiographic study of proline incorporation by mouse lingual epithelium
Mouse lingual epithelium incorporates significant amounts of L-proline-2, 3-H 3 one hour after intraperitoneal injection of the tritiated amino acid. All viable cell strata incorporated approximately equal amounts of proline as assessed by autoradiographic techniques. Grain counts at 30 minutes, 1 hour, 4 hours and 24 hours, the four time periods studied, indicated a progressive incorporation of proline up to 4 hours following injection. Preferential incorporation of proline into any one cell structure or group of structures was not observed. Keratohyalin granules (KHG's) demonstrated incorporated proline; however, usually only one silver grain appeared over each granule, and, based on grain counts, the amount of proline incorporated by KHG's appeared slightly less than the general labeling observed in KHG-containing cells. This finding supports recent biochemical studies which have indicated a considerably lower proline content of keratohyalin than had previously been reported. Significant proline incorporation into the epithelial basal lamina was not observed during the 24 hours of this study. Thus, while recent recombination experiments have conclusively demonstrated that epithelial basal cells synthesize considerable quantities of basal lamina in a 24 hour period; it would appear that epithelial basal cells contribute little to a formed, intact basal lamina. This finding lends credence to the concept of a long basal lamina turnover time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47661/1/441_2004_Article_BF00307250.pd
Language development after cochlear implantation: an epigenetic model
Growing evidence supports the notion that dynamic gene expression, subject to epigenetic control, organizes multiple influences to enable a child to learn to listen and to talk. Here, we review neurobiological and genetic influences on spoken language development in the context of results of a longitudinal trial of cochlear implantation of young children with severe to profound sensorineural hearing loss in the Childhood Development after Cochlear Implantation study. We specifically examine the results of cochlear implantation in participants who were congenitally deaf (N = 116). Prior to intervention, these participants were subject to naturally imposed constraints in sensory (acoustic–phonologic) inputs during critical phases of development when spoken language skills are typically achieved rapidly. Their candidacy for a cochlear implant was prompted by delays (n = 20) or an essential absence of spoken language acquisition (n = 96). Observations thus present an opportunity to evaluate the impact of factors that influence the emergence of spoken language, particularly in the context of hearing restoration in sensitive periods for language acquisition. Outcomes demonstrate considerable variation in spoken language learning, although significant advantages exist for the congenitally deaf children implanted prior to 18 months of age. While age at implantation carries high predictive value in forecasting performance on measures of spoken language, several factors show significant association, particularly those related to parent–child interactions. Importantly, the significance of environmental variables in their predictive value for language development varies with age at implantation. These observations are considered in the context of an epigenetic model in which dynamic genomic expression can modulate aspects of auditory learning, offering insights into factors that can influence a child’s acquisition of spoken language after cochlear implantation. Increased understanding of these interactions could lead to targeted interventions that interact with the epigenome to influence language outcomes with intervention, particularly in periods in which development is subject to time-sensitive experience
Reciprocal Innervation of Outer Hair Cells in a Human Infant
Reciprocal synapses are characterized by the presence of both afferent and efferent types of synaptic specializations between two cells. They have been described at the neural poles of outer hair cells (OHCs) in humans with advanced age and two monkey species. Our objective was to study the innervation of the OHCs and determine if reciprocal synapses were present in a young (8-month-old infant) human subject. We studied the synaptic and cytoplasmic morphology of 162 nerve terminals innervating 29 OHCs using serial section transmission electron microscopy. Seventy-six percent of all OHCs were innervated by terminals with reciprocal synapses. This prevalence increased from the first toward the third row (p < 0.001), and 100% of OHCs in the third row demonstrated at least one reciprocal synapse. The prevalence of terminals with reciprocal synapses was higher in the human infant than in older human subjects and was very similar to what has been reported for the chimpanzee. Reciprocal synapses occur in sufficient numbers to be physiologically significant in primates. The nerve terminals were found to segregate into two groups on the basis of their cytoplasmic morphological characteristics: (1) vesicle-rich/neurofilament-poor (VR/NP) and (2) vesicle-poor/neurofilament-rich (VP/NR). All afferent and reciprocal terminals were of the VP/NR variety. The majority of the efferent terminals originated from VR/NP nerve fibers (classical olivocochlear morphology), but 23.5% of the efferent terminals were VP/NR. The hypothesis that peripheral processes of type II spiral ganglion cells form classical afferent, reciprocal, and a number of purely presynaptic terminals on OHCs is discussed. The presence of different types of synaptic specializations on OHCs formed by nerve fibers of the same type (VP/NR) suggests the existence of reciprocal neuronal circuits between OHCs sharing the dendritic arborization of a type II spiral ganglion cell
- …