2,809 research outputs found
Spinoza
"Spinoza", second edition.
Encyclopedia entry for the Springer Encyclopedia of EM Phil and the Sciences, ed. D. Jalobeanu and C. T. Wolfe
Revised List of Type Specimens on Deposit in the University of California Davis Nematode Collection
The list of deposited type specimens is updated for the University of California Davis Nematode Collection, as recommended by the International Code of Zoological Nomenclature. The type collection includes 1,001 species and more than 11,000 individual specimens mounted on microscope slides. This list can be used as a reference to locate specimens but is not meant to clarify ambiguities that may exist concerning the type status of particular specimens
The social psychology of collective victimhood
Collective victimhood, which results from the experience of being targeted as members of a group, has powerful effects on individuals and groups. The focus of this Special Issue is on how people respond to collective victimhood and how these responses shape intergroup relations. We introduce the Special Issue with an overview of emerging social psychological research on collective victimhood. To date, this research has focused mostly on destructive versus positive consequences of collective victimhood for relations with an adversary group, and examined victim groups' needs, victim beliefs, and underlying social identity and categorization processes. We identify several neglected factors in this literature, some of which are addressed by the empirical contributions in the current issue. The Special Issue offers novel perspectives on collective victimhood, presenting findings based on a diverse range of methods with mostly community samples that have direct and vicarious experiences of collective harm in different countries
Random Walks on a Fluctuating Lattice: A Renormalization Group Approach Applied in One Dimension
We study the problem of a random walk on a lattice in which bonds connecting
nearest neighbor sites open and close randomly in time, a situation often
encountered in fluctuating media. We present a simple renormalization group
technique to solve for the effective diffusive behavior at long times. For
one-dimensional lattices we obtain better quantitative agreement with
simulation data than earlier effective medium results. Our technique works in
principle in any dimension, although the amount of computation required rises
with dimensionality of the lattice.Comment: PostScript file including 2 figures, total 15 pages, 8 other figures
obtainable by mail from D.L. Stei
Heat Conduction and Entropy Production in a One-Dimensional Hard-Particle Gas
We present large scale simulations for a one-dimensional chain of hard-point
particles with alternating masses. We correct several claims in the recent
literature based on much smaller simulations. Both for boundary conditions with
two heat baths at different temperatures at both ends and from heat current
autocorrelations in equilibrium we find heat conductivities kappa to diverge
with the number N of particles. These depended very strongly on the mass
ratios, and extrapolation to N -> infty resp. t -> infty is difficult due to
very large finite-size and finite-time corrections. Nevertheless, our data seem
compatible with a universal power law kappa ~ N^alpha with alpha approx 0.33.
This suggests a relation to the Kardar-Parisi-Zhang model. We finally show that
the hard-point gas with periodic boundary conditions is not chaotic in the
usual sense and discuss why the system, when kept out of equilibrium, leads
nevertheless to energy dissipation and entropy production.Comment: 4 pages (incl. 5 figures), RevTe
Thermal and mechanical characterization of high-performance polymer fabrics for applications in wearable devices
With advances in fexible and wearable device technology, thermal regulation will become increasingly important. Fabrics and substrates used for such applications will be required to efectively spread any heat generated in the devices to ensure user comfort and safety, while also preventing overheating of the electronic components. Commercial fabrics consisting of ultra-high molecular weight polyethylene (UHMW-PE) fbers are currently used in personal body armor and sports gear owing to their high strength, durability, and abrasion resistance. In addition to superior mechanical properties, UHMW-PE fbers exhibit very high axial thermal conductivity due to a high degree of polymer chain orientation. However, these materials have not been widely explored for thermal management applications in fexible and wearable devices. Assessment of their suitability for such applications requires characterization of the thermal and mechanical properties of UHMW-PE in the fabric form that will ultimately be used to construct heat spreading materials. Here, we use advanced techniques to characterize the thermal and mechanical properties of UHMW-PE fabrics, as well as other conventional fexible materials and fabrics. An infrared microscopy-based approach measures the efective in-plane thermal conductivity, while an ASTM-based bend testing method quantifes the bending stifness. We also characterize the efective thermal behavior of fabrics when subjected to creasing and thermal annealing to assess their reliability for relevant practical engineering applications. Fabrics consisting of UHMW-PE fbers have signifcantly higher thermal conductivities than the benchmark conventional materials while possessing good mechanical fexibility, thereby showcasing great potential as substrates for fexible and wearable heat spreading application
Generalized Ensemble and Tempering Simulations: A Unified View
From the underlying Master equations we derive one-dimensional stochastic
processes that describe generalized ensemble simulations as well as tempering
(simulated and parallel) simulations. The representations obtained are either
in the form of a one-dimensional Fokker-Planck equation or a hopping process on
a one-dimensional chain. In particular, we discuss the conditions under which
these representations are valid approximate Markovian descriptions of the
random walk in order parameter or control parameter space. They allow a unified
discussion of the stationary distribution on, as well as of the stationary flow
across each space. We demonstrate that optimizing the flow is equivalent to
minimizing the first passage time for crossing the space, and discuss the
consequences of our results for optimizing simulations. Finally, we point out
the limitations of these representations under conditions of broken ergodicity.Comment: 11 pages Latex, 2 eps figures, revised version, typos corrected, PRE
in pres
Langevin Trajectories between Fixed Concentrations
We consider the trajectories of particles diffusing between two infinite
baths of fixed concentrations connected by a channel, e.g. a protein channel of
a biological membrane. The steady state influx and efflux of Langevin
trajectories at the boundaries of a finite volume containing the channel and
parts of the two baths is replicated by termination of outgoing trajectories
and injection according to a residual phase space density. We present a
simulation scheme that maintains averaged fixed concentrations without creating
spurious boundary layers, consistent with the assumed physics
Concepts in Animal Parasitology, Chapter 15: Introduction to Endoparasitic Platyhelminths (Phylum Platyhelminthes)
Chapter 15 in Concepts in Animal Parasitology, an introduction to endoparasitic platyhelminths, by Larry S. Roberts, John J. Janovy, Jr., Steve Nadler, and Scott L. Gardner. 2024. S. L. Gardner and S. A. Gardner, editors. Zea Books, Lincoln, Nebraska, United States. doi: 10.32873/unl.dc.ciap01
- …