2,809 research outputs found

    Spinoza

    Get PDF
    "Spinoza", second edition. Encyclopedia entry for the Springer Encyclopedia of EM Phil and the Sciences, ed. D. Jalobeanu and C. T. Wolfe

    Revised List of Type Specimens on Deposit in the University of California Davis Nematode Collection

    Get PDF
    The list of deposited type specimens is updated for the University of California Davis Nematode Collection, as recommended by the International Code of Zoological Nomenclature. The type collection includes 1,001 species and more than 11,000 individual specimens mounted on microscope slides. This list can be used as a reference to locate specimens but is not meant to clarify ambiguities that may exist concerning the type status of particular specimens

    The social psychology of collective victimhood

    Get PDF
    Collective victimhood, which results from the experience of being targeted as members of a group, has powerful effects on individuals and groups. The focus of this Special Issue is on how people respond to collective victimhood and how these responses shape intergroup relations. We introduce the Special Issue with an overview of emerging social psychological research on collective victimhood. To date, this research has focused mostly on destructive versus positive consequences of collective victimhood for relations with an adversary group, and examined victim groups' needs, victim beliefs, and underlying social identity and categorization processes. We identify several neglected factors in this literature, some of which are addressed by the empirical contributions in the current issue. The Special Issue offers novel perspectives on collective victimhood, presenting findings based on a diverse range of methods with mostly community samples that have direct and vicarious experiences of collective harm in different countries

    Random Walks on a Fluctuating Lattice: A Renormalization Group Approach Applied in One Dimension

    Full text link
    We study the problem of a random walk on a lattice in which bonds connecting nearest neighbor sites open and close randomly in time, a situation often encountered in fluctuating media. We present a simple renormalization group technique to solve for the effective diffusive behavior at long times. For one-dimensional lattices we obtain better quantitative agreement with simulation data than earlier effective medium results. Our technique works in principle in any dimension, although the amount of computation required rises with dimensionality of the lattice.Comment: PostScript file including 2 figures, total 15 pages, 8 other figures obtainable by mail from D.L. Stei

    Heat Conduction and Entropy Production in a One-Dimensional Hard-Particle Gas

    Get PDF
    We present large scale simulations for a one-dimensional chain of hard-point particles with alternating masses. We correct several claims in the recent literature based on much smaller simulations. Both for boundary conditions with two heat baths at different temperatures at both ends and from heat current autocorrelations in equilibrium we find heat conductivities kappa to diverge with the number N of particles. These depended very strongly on the mass ratios, and extrapolation to N -> infty resp. t -> infty is difficult due to very large finite-size and finite-time corrections. Nevertheless, our data seem compatible with a universal power law kappa ~ N^alpha with alpha approx 0.33. This suggests a relation to the Kardar-Parisi-Zhang model. We finally show that the hard-point gas with periodic boundary conditions is not chaotic in the usual sense and discuss why the system, when kept out of equilibrium, leads nevertheless to energy dissipation and entropy production.Comment: 4 pages (incl. 5 figures), RevTe

    Thermal and mechanical characterization of high-performance polymer fabrics for applications in wearable devices

    Get PDF
    With advances in fexible and wearable device technology, thermal regulation will become increasingly important. Fabrics and substrates used for such applications will be required to efectively spread any heat generated in the devices to ensure user comfort and safety, while also preventing overheating of the electronic components. Commercial fabrics consisting of ultra-high molecular weight polyethylene (UHMW-PE) fbers are currently used in personal body armor and sports gear owing to their high strength, durability, and abrasion resistance. In addition to superior mechanical properties, UHMW-PE fbers exhibit very high axial thermal conductivity due to a high degree of polymer chain orientation. However, these materials have not been widely explored for thermal management applications in fexible and wearable devices. Assessment of their suitability for such applications requires characterization of the thermal and mechanical properties of UHMW-PE in the fabric form that will ultimately be used to construct heat spreading materials. Here, we use advanced techniques to characterize the thermal and mechanical properties of UHMW-PE fabrics, as well as other conventional fexible materials and fabrics. An infrared microscopy-based approach measures the efective in-plane thermal conductivity, while an ASTM-based bend testing method quantifes the bending stifness. We also characterize the efective thermal behavior of fabrics when subjected to creasing and thermal annealing to assess their reliability for relevant practical engineering applications. Fabrics consisting of UHMW-PE fbers have signifcantly higher thermal conductivities than the benchmark conventional materials while possessing good mechanical fexibility, thereby showcasing great potential as substrates for fexible and wearable heat spreading application

    Generalized Ensemble and Tempering Simulations: A Unified View

    Get PDF
    From the underlying Master equations we derive one-dimensional stochastic processes that describe generalized ensemble simulations as well as tempering (simulated and parallel) simulations. The representations obtained are either in the form of a one-dimensional Fokker-Planck equation or a hopping process on a one-dimensional chain. In particular, we discuss the conditions under which these representations are valid approximate Markovian descriptions of the random walk in order parameter or control parameter space. They allow a unified discussion of the stationary distribution on, as well as of the stationary flow across each space. We demonstrate that optimizing the flow is equivalent to minimizing the first passage time for crossing the space, and discuss the consequences of our results for optimizing simulations. Finally, we point out the limitations of these representations under conditions of broken ergodicity.Comment: 11 pages Latex, 2 eps figures, revised version, typos corrected, PRE in pres

    Langevin Trajectories between Fixed Concentrations

    Full text link
    We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations connected by a channel, e.g. a protein channel of a biological membrane. The steady state influx and efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the two baths is replicated by termination of outgoing trajectories and injection according to a residual phase space density. We present a simulation scheme that maintains averaged fixed concentrations without creating spurious boundary layers, consistent with the assumed physics

    Concepts in Animal Parasitology, Chapter 15: Introduction to Endoparasitic Platyhelminths (Phylum Platyhelminthes)

    Get PDF
    Chapter 15 in Concepts in Animal Parasitology, an introduction to endoparasitic platyhelminths, by Larry S. Roberts, John J. Janovy, Jr., Steve Nadler, and Scott L. Gardner. 2024. S. L. Gardner and S. A. Gardner, editors. Zea Books, Lincoln, Nebraska, United States. doi: 10.32873/unl.dc.ciap01
    • …
    corecore