181 research outputs found
Dynamic hysteresis in cyclic deformation of crystalline solids
The hysteresis or internal friction in the deformation of crystalline solids
stressed cyclically is studied from the viewpoint of collective dislocation
dynamics. Stress-controlled simulations of a dislocation dynamics model at
various loading frequencies and amplitudes are performed to study the stress -
strain rate hysteresis. The hysteresis loop areas exhibit a maximum at a
characteristic frequency and a power law frequency dependence in the low
frequency limit, with the power law exponent exhibiting two regimes,
corresponding to the jammed and the yielding/moving phases of the system,
respectively. The first of these phases exhibits non-trivial critical-like
viscoelastic dynamics, crossing over to intermittent viscoplastic deformation
for higher stress amplitudes.Comment: 5 pages, 4 figures, to appear in Physical Review Letter
Comment on “Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal” Appl. Phys. Lett. 91, 111915 (2007)
While this article provides insight into differences in mechanics between Ga+-irradiated and “pure” surfaces of molybdenum, there are several statements that are either inaccurate or poorly stated. It is clear that when a surface is directly irradiated by orthogonal ion beam (0.07–0.21 mW), a focused ion beam (FIB) damage layer will likely form and affect the strength. However, this finding does not provide adequate foundation for raising the question of FIB-induced hardening in nanopillars, given the vast differences between these experiments and procedure used in pillar fabrication. These issues would cause considerable confusion and result in disservice to mechanical testing community if not clarified
Fundamental Differences in Mechanical Behavior between Two Types of Crystals at the Nanoscale
We present differences in the mechanical behavior of nanoscale gold and molybdenum single crystals. A significant strength increase is observed as the size is reduced to 100 nm. Both nanocrystals exhibit discrete strain bursts during plastic deformation. We postulate that they arise from significant differences in the dislocation behavior. Dislocation starvation is the predominant mechanism of plasticity in nanoscale fcc crystals, while junction formation and hardening characterize bcc plasticity. A statistical analysis of strain bursts is performed as a function of size and compared with stochastic models
Measurement of Spin Polarization by Andreev Reflection in Ferromagnetic In1-xMnxSb Epilayers
We carried out Point Contact Andreev Reflection (PCAR) spin spectroscopy
measurements on epitaxially-grown ferromagnetic In1-xMnxSb epilayers with a
Curie temperature of ~9K. The spin sensitivity of PCAR in this material was
demonstrated by parallel control studies on its non-magnetic analog,
In1-yBeySb. We found the conductance curves of the Sn point contacts with
In1-yBeySb to be fairly conventional, with the possible presence of
proximity-induced superconductivity effects at the lowest temperatures. The
experimental Z-values of interfacial scattering agreed well with the estimates
based on the Fermi velocity mismatch between the semiconductor and the
superconductor. These measurements provided control data for subsequent PCAR
measurements on ferromagnetic In1-xMnxSb, which indicated spin polarization in
In1-xMnxSb to be 52 +- 3%
- …