2,921 research outputs found

    Birds captured during the years 1970-1982 in Mallorca

    Get PDF

    Discrete Choices under Social Influence: Generic Properties

    Get PDF
    We consider a model of socially interacting individuals that make a binary choice in a context of positive additive endogenous externalities. It encompasses as particular cases several models from the sociology and economics literature. We extend previous results to the case of a general distribution of idiosyncratic preferences, called here Idiosyncratic Willingnesses to Pay (IWP). Positive additive externalities yield a family of inverse demand curves that include the classical downward sloping ones but also new ones with non constant convexity. When j, the ratio of the social influence strength to the standard deviation of the IWP distribution, is small enough, the inverse demand is a classical monotonic (decreasing) function of the adoption rate. Even if the IWP distribution is mono-modal, there is a critical value of j above which the inverse demand is non monotonic, decreasing for small and high adoption rates, but increasing within some intermediate range. Depending on the price there are thus either one or two equilibria. Beyond this first result, we exhibit the generic properties of the boundaries limiting the regions where the system presents different types of equilibria (unique or multiple). These properties are shown to depend only on qualitative features of the IWP distribution: modality (number of maxima), smoothness and type of support (compact or infinite). The main results are summarized as phase diagrams in the space of the model parameters, on which the regions of multiple equilibria are precisely delimited.Comment: 42 pages, 15 figure

    Rigorous Bounds to Retarded Learning

    Full text link
    We show that the lower bound to the critical fraction of data needed to infer (learn) the orientation of the anisotropy axis of a probability distribution, determined by Herschkowitz and Opper [Phys.Rev.Lett. 86, 2174 (2001)], is not always valid. If there is some structure in the data along the anisotropy axis, their analysis is incorrect, and learning is possible with much less data points.Comment: 1 page, 1 figure. Comment accepted for publication in Physical Review Letter

    Discrete Choices under Social Influence: Generic Properties

    Get PDF
    We consider a model of socially interacting individuals that make a binary choice in a context of positive additive endogenous externalities. It encompasses as particular cases several models from the sociology and economics literature. We extend previous results to the case of a general distribution of idiosyncratic preferences, called here Idiosyncratic Willingnesses to Pay (IWP).Positive additive externalities yield a family of inverse demand curves that include the classical downward sloping ones but also new ones with non constant convexity. When jj, the ratio of the social influene strength to the standard deviation of the IWP distribution, is small enough, the inverse demand is a classical monotonic (decreasing) function of the adoption rate. Even if the IWP distribution is mono-modal, there is a critical value of jj above which the inverse demand is non monotonic, decreasing for small and high adoption rates, but increasing within some intermediate range. Depending on the price there are thus either one or two equilibria.Beyond this first result, we exhibit the {\em generic} properties of the boundaries limiting the regions where the system presents different types of equilibria (unique or multiple). These properties are shown to depend {\em only} on qualitative features of the IWP distribution: modality (number of maxima), smoothness and type of support (compact or infinite).The main results are summarized as {\em phase diagrams} in the space of the model parameters, on which the regions of multiple equilibria are precisely delimited.discrete choice; social influence; externalities; heterogeneous agents; socioeconomic behavior

    Monopoly Market with Externality: an Analysis with Statistical Physics and ACE

    Get PDF
    In this paper, we explore the effects of localised externalities introduced through interaction structures upon the properties of the simplest market model: the discrete choice model with a single homogeneous product and a single seller (the monopoly case). The resulting market is viewed as a complex interactive system with a communication network. Our main goal is to understand how generic properties of complex adaptive systems can enlighten our understanding of the market mechanisms when individual decisions are inter-related. To do so we make use of an ACE (Agent based Computational Economics) approach, and we discuss analogies between simulated market mechanisms and classical collective phenomena studied in Statistical Physics. More precisely, we consider discrete choice models where the agents are subject to local positive externality. We compare two extreme special cases, the McFadden (McF) and the Thurstone (TP) models. In the McF model the individuals' willingness to pay are heterogeneous, but remain fixed. In the TP model, all the agents have the same homogeneous part of willingness to pay plus an additive random (logistic) idiosyncratic characteristic. We show that these models are formally equivalent to models studied in the Physics literature, the McF case corresponding to a `Random Field Ising model' (RFIM) at zero temperature, and the TP case to an Ising model at finite temperature in a uniform (non random) external field. From the physicist's point of view, the McF and the TP models are thus quite different: they belong to the classes of, respectively,`quenched' and `annealed' disorder, which are known to lead to very different aggregate behaviour. This paper explores some consequences for market behaviour. Considering the optimisation of profit by the monopolist, we exhibit a new `first order phase transition': if the social influence is strong enough, there is a regime where, if the mean willingness to pay increases, or if the production costs decreases, the optimal solution for the monopolist jumps from a solution with a high price and a small number of buyers, to a solution with a low price and a large number of buyers.Agent-Based Computational Economics, discret choices, consumers externality, complex adaptive system, phase transition, avalanches, interactions, hysteresis.

    Collective states in social systems with interacting learning agents

    Full text link
    We consider a social system of interacting heterogeneous agents with learning abilities, a model close to Random Field Ising Models, where the random field corresponds to the idiosyncratic willingness to pay. Given a fixed price, agents decide repeatedly whether to buy or not a unit of a good, so as to maximize their expected utilities. We show that the equilibrium reached by the system depends on the nature of the information agents use to estimate their expected utilities.Comment: 18 pages, 26 figure

    The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies

    Full text link
    Retinal cell survival requires an equilibrium between oxygen, reactive oxygen species, and antioxidant molecules that counteract oxidative stress damage. Oxidative stress alters cell homeostasis and elicits a protective cell response, which is most relevant in photoreceptors and retinal ganglion cells, neurons with a high metabolic rate that are continuously subject to light/oxidative stress insults. We analyze how the alteration of cellular endogenous pathways for protection against oxidative stress leads to retinal dysfunction in prevalent (age-related macular degeneration, glaucoma) as well as in rare genetic visual disorders (Retinitis pigmentosa, Leber hereditary optic neuropathy). We also highlight some of the key molecular actors and discuss potential therapies using antioxidants agents, modulators of gene expression and inducers of cytoprotective signaling pathways to treat damaging oxidative stress effects and ameliorate severe phenotypic symptoms in multifactorial and rare retinal dystrophies
    • …
    corecore