64 research outputs found

    \u3ci\u3eTomoxia bucephala\u3c/i\u3e A. Costa (Coleoptera: Mordellidae), a Palearctic tumbling flower beetle established in North America

    Get PDF
    Tomoxia bucephala A. Costa (Coleoptera: Mordellidae), a Palearctic tumbling flower beetle native to Europe, Asia, and northernmost Africa, is now known from North America. The first known occurrences were in 2015 in Essex and Union counties, New Jersey, U.S.A. and in 2019 in Passaic County, New Jersey, all in the New York City metropolitan area. An additional collection documents the species in 2016 from Allegheny County, Pennsylvania, in the Pittsburgh metropolitan area. The multiple occurrences, the large distance between those in New Jersey and Pennsylvania, and multiple detections in natural areas indicate T. bucephala is established in North America and apparently invasive. Several morphological features differenti­ate T. bucephala from the two congeners native to North America, T. inclusa LeConte and T. lineella LeConte, especially coloration patterns of elytral and pronotal vestiture, and coloration of antennae and front legs. This is the first report of a non-native mordellid species established in North America. Tomoxia bucephala does not appear to pose a significant direct economic threat in North America since it feeds in decaying trees. However, T. bucephala occurrences are within the geographic ranges of T. inclusa and T. lineella, and the biology of T. bucephala is similar to these other Tomoxia species. Thus, T. bucephala likely will expand its range within North America, with probable ecological impact on communities of native saproxylic beetles, especially T. lineella and T. inclusa

    A tale of worldwide success: Behind the scenes of Carex (Cyperaceae) biogeography and diversification

    Get PDF
    The megadiverse genus Carex (c. 2000 species, Cyperaceae) has a nearly cosmopolitan distribution, displaying an inverted latitudinal richness gradient with higher species diversity in cold-temperate areas of the Northern Hemisphere. Despite great expansion in our knowledge of the phylogenetic history of the genus and many molecular studies focusing on the biogeography of particular groups during the last few decades, a global analysis of Carex biogeography and diversification is still lacking. For this purpose, we built the hitherto most comprehensive Carex-dated phylogeny based on three markers (ETS–ITS–matK), using a previous phylogenomic Hyb-Seq framework, and a sampling of two-thirds of its species and all recognized sections. Ancestral area reconstruction, biogeographic stochastic mapping, and diversification rate analyses were conducted to elucidate macroevolutionary biogeographic and diversification patterns. Our results reveal that Carex originated in the late Eocene in E Asia, where it probably remained until the synchronous diversification of its main subgeneric lineages during the late Oligocene. E Asia is supported as the cradle of Carex diversification, as well as a “museum” of extant species diversity. Subsequent “out-of-Asia” colonization patterns feature multiple asymmetric dispersals clustered toward present times among the Northern Hemisphere regions, with major regions acting both as source and sink (especially Asia and North America), as well as several independent colonization events of the Southern Hemisphere. We detected 13 notable diversification rate shifts during the last 10 My, including remarkable radiations in North America and New Zealand, which occurred concurrently with the late Neogene global cooling, which suggests that diversification involved the colonization of new areas and expansion into novel areas of niche space.This work was carried out with financial support by the National Science Foundation (Award #1255901 to ALH and Award #1256033 to EHR), the Spanish Ministry of Economy and Competitiveness (project CGL2016–77401‐P to SM-B and ML), the USDA National Institute of Food and Agriculture (McIntire Stennis project 1018692 to DS) as well as postdoctoral fellowships towards SM‐B (Universidad Pablo de Olavide, PP16/12‐APP), and PJ‐M (National Science Foundation, Award #1256033, and the Smithsonian Postdoctoral Fellowship program)

    Phylogeny and Biogeography of the Carnivorous Plant Family Sarraceniaceae

    Get PDF
    The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44–53 million years ago (Mya) (highest posterior density [HPD] estimate = 47 Mya). By 25–44 (HPD = 35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14–32 (HPD = 23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2–7, HPD = 4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene glaciation, <3 Mya. Overall, these results suggest climatic change at different temporal and spatial scales in part shaped the distribution and diversity of this carnivorous plant clade

    Colonization of new pitcher plant leaves by a mite symbiont.

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/53842/1/2277.pdfDescription of 2277.pdf : Access restricted to on-site users at the U-M Biological Station

    Observations on the ecology and distribution of Lycopodium species within the Lake Superior drainage.

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/53843/1/2278.pdfDescription of 2278.pdf : Access restricted to on-site users at the U-M Biological Station

    Smilax laurifolia

    No full text
    Angiosperm

    Tetrapterys arcana

    No full text
    Angiosperm
    • 

    corecore