8 research outputs found

    The paleolimnologist's guide to compound-specific stable isotope analysis - An introduction to principles and applications of CSIA for quaternary lake sediments

    Get PDF
    The stable isotope composition of key chemical elements for life on Earth (e.g., carbon, hydrogen, nitrogen, oxygen, sulfur) tracks changes in fluxes and turnover of these elements in the biogeosphere. Over the past 15-20 years, the potential to measure these isotopic compositions for individual, source-specific organic molecules (biomarkers) and to link them to a range of environmental conditions and processes has been unlocked and amplified by increasingly sensitive, affordable and wide-spread analytical technology. Paleoenvironmental research has seen enormous step-changes in our understanding of past ecosystem dynamics. Vital to these paradigm shifts is the need for well-constrained modern and recent analogues. Through increased understanding of these environments and their biological pathways we can successfully unravel past climatic changes and associated ecosystem adaption. With this review, we aim to introduce scientists working in the field of Quaternary paleolimnology to the tools that compound-specific isotope analysis (CSIA) provides for the gain of information on biogeochemical conditions in ancient environments. We provide information on fundamental principles and applications of novel and established CSIA applications based on the carbon, hydrogen, nitrogen, oxygen and sulfur isotopic composition of biomarkers. While biosynthesis, sources and associated isotope fractionation patterns of compounds such as n-alkanes are relatively well-constrained, new applications emerge from the increasing use of functionalized alkyl lipids, steroids, hopanoids, isoprenoids, GDGTs, pigments or cellulose. Biosynthesis and fractionation are not always fully understood

    Introducing Global Peat-Specific Temperature and pH Calibrations Based on brGDGT Bacterial Lipids

    Get PDF
    Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (−8 to 27 °C) and pH (3–8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 × CBTpeat + 8.07 (n = 51, R2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAATpeat (°C) = 52.18 × MBT5me′ − 23.05 (n = 96, R2 = 0.76, RMSE = 4.7 °C). These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (∼4.7 °C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (∼15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climate. © 2017 The Author

    Application of the long chain diol index (LDI) paleothermometer to the early Pleistocene (MIS 96)

    Get PDF
    Recently, a new organic geochemical paleothermometer based on the relative abundance of long chain alkyl 1,13- and 1,15-diols, the so-called long chain diol index (LDI), was proposed. Because of its novelty, the proxy has not been reported for sediments older than 43 ka. We therefore determined the LDI for 14 sediment samples from the early Pleistocene between 2.49 and 2.41 Ma, comprising Marine Isotope Stage (MIS) 98 to 95, and converted the values to sea surface temperature (SST) estimates to test whether the LDI could be applied or not to the early Quaternary. We show that the long chain diols can be preserved in marine sediments from the early Pleistocene, although at our study site this is limited to periods of increased biomarker accumulation (glacials). Although the results are based on a limited time interval and number of samples, the similarity between LDI-based SST and alkenone-based SST from the same samples suggests that the LDI proxy may have potential for studies covering the entire Quaternar

    The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review

    Get PDF
    Molecular fossils (biomarkers) are abundant in organic rich natural archives such as peats and lignites (fossilized peat), where their distribution is governed by their biological source, environmental factors, such as temperature and pH, and diagenetic reactions. As a result, biomarkers in peat have become an important tool to study past variations in vegetation, environment and climate in terrestrial settings, as well as biogeochemistry on time-scales of hundreds to millions of years ago. In recent years, significant progress has been made in understanding the controls on biomarker distributions, especially those derived from microorganisms and peat-forming plants, allowing for example, the quantification of past temperature and vegetation history during peat formation. Herein, we provide a review of a range of commonly applied biomarker proxies in peats, discuss the latest proxy developments, and explore the potential of using biomarkers in peat and lignite as paleoenvironmental proxies. We provide a framework for biomarker analyses in peat and identify possible future research directions

    Cretaceous sea-surface temperature evolution: Constraints from TEX<sub>86</sub> and planktonic foraminiferal oxygen isotopes

    Get PDF
    It is well established that greenhouse conditions prevailed during the Cretaceous Period (~ 145–66 Ma). Determining the exact nature of the greenhouse-gas forcing, climatic warming and climate sensitivity remains, however, an active topic of research. Quantitative and qualitative geochemical and palaeontological proxies provide valuable observational constraints on Cretaceous climate. In particular, reconstructions of Cretaceous sea-surface temperatures (SSTs) have been revolutionised firstly by the recognition that clay-rich sequences can host exceptionally preserved planktonic foraminifera allowing for reliable oxygen-isotope analyses and, secondly by the development of the organic palaeothermometer TEX86, based on the distribution of marine archaeal membrane lipids. Here we provide a new compilation and synthesis of available planktonic foraminiferal δ18O (δ18Opl) and TEX86-SST proxy data for almost the entire Cretaceous Period. The compilation uses SSTs recalculated from published raw data, allowing examination of the sensitivity of each proxy to the calculation method (e.g., choice of calibration) and places all data on a common timescale. Overall, the compilation shows many similarities with trends present in individual records of Cretaceous climate change. For example, both SST proxies and benthic foraminiferal δ18O records indicate maximum warmth in the Cenomanian–Turonian interval. Our reconstruction of the evolution of latitudinal temperature gradients (low, ±48°, palaeolatitudes) reveals temporal changes. In the Valanginian–Aptian, the low-to-higher mid-latitudinal temperature gradient was weak (decreasing from ~ 10–17 °C in the Valanginian, to ~ 3–5 °C in the Aptian, based on TEX86-SSTs). In the Cenomanian–Santonian, reconstructed latitudinal temperature contrasts are also small relative to modern (< 14 °C, based on low-latitude TEX86 and δ18Opl SSTs minus higher latitude δ18Opl SSTs, compared with ~ 20 °C for the modern). In the mid-Campanian to end-Maastrichtian, latitudinal temperature gradients strengthened (~ 19–21 °C, based on low-latitude TEX86 and δ18Opl SSTs minus higher latitude δ18Opl SSTs), with cooling occurring at low-, middle- and higher palaeolatitude sites, implying global surface-ocean cooling and/or changes in ocean heat transport in the Late Cretaceous. These reconstructed long-term trends are resilient, regardless of the choice of proxy (TEX86 or δ18Opl) or calibration. This new Cretaceous SST synthesis provides an up-to-date target for modelling studies investigating the mechanics of extreme climates

    Complex and protracted environmental and ecological perturbations during OAE 1a - Evidence from an expanded pelagic section from south Spain (Western Tethys)

    No full text
    corecore