561 research outputs found

    Interrogating cortical function with transcranial magnetic stimulation: insights from neurodegenerative disease and stroke

    Get PDF
    Transcranial magnetic stimulation (TMS) is an accessible, non-invasive technique to study cortical function in vivo. TMS studies have provided important pathophysiological insights across a range of neurodegenerative disorders and enhanced our understanding of brain reorganisation after stroke. In neurodegenerative disease, TMS has provided novel insights into the function of cortical output cells and the related intracortical interneuronal networks. Characterisation of cortical hyperexcitability in amyotrophic lateral sclerosis and altered motor cortical function in frontotemporal dementia, demonstration of cholinergic deficits in Alzheimer's disease and Parkinson's disease are key examples where TMS has led to advances in understanding of disease pathophysiology and potential mechanisms of propagation, with the potential for diagnostic applications. In stroke, TMS methodology has facilitated the understanding of cortical reorganisation that underlie functional recovery. These insights are critical to the development of effective and targeted rehabilitation strategies in stroke. The present review will provide an overview of cortical function measures obtained using TMS and how such measures may provide insight into brain function. Through an improved understanding of cortical function across a range of neurodegenerative disorders, and identification of changes in neural structure and function associated with stroke that underlie clinical recovery, more targeted therapeutic approaches may now be developed in an evolving era of precision medicine

    Comparative efficacy of topical tetraVisc versus lidocaine gel in cataract surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare the clinical efficacy of lidocaine 2% with tetracaine 0.5% for cataract surgery.</p> <p>Methods</p> <p>In a randomized, multi-surgeon, controlled clinical trial,122 consecutive cataract cases eligible for topical anesthesia, were randomly assigned to receive lidocaine 2% gel (1 ml) or tetracaine solution 0.5% (TetraVisc, 0.5 ml) before clear corneal phacoemulsification. Main outcome measure was visual analog scale (0 to 10), which was used to measure intra-operative pain. Secondary outcome measures included patients' discomfort due to tissue manipulation and surgeon graded patients' cooperation. Duration of surgery and intra-operative complications were also recorded.</p> <p>Results</p> <p>The mean age in TetraVisc (TV) group was 70.4 years and in the lidocaine gel group (LG) it was 70.6 years (p = 0.89). Patient reported mean intra-operative pain scores by visual analog scale were 0.70 Β± 0.31 in TV group and 1.8 Β± 0.4 in LG group (<it>P </it>< 0.001). Mean patient cooperation was also marginally better in the TV group (8.3 Β± 0.3) compared to LG group (8.4 Β± 0.6) (P = 0.25). 96% of patients in TV group showed intra-operative corneal clarity compared to 91% in LG group. TV group had less (1 out of 61 patients, 1.6%) intra-operative complications than LG group (3 out of 61 patients, 4.8%). No anesthesia related complications were noted in either group</p> <p>Conclusion</p> <p>Topical TetraVisc solution was superior to lidocaine 2% gel for pain control in patients undergoing clear corneal phacoemulsification. Lidocaine 2% gel is similar to TetraVisc in patient comfort and surgeon satisfaction.</p> <p>Trial Registration</p> <p><b>Clinical trials number</b>: ISRCTN78374774</p

    A Rapid Assessment Scorecard to Identify Informal Settlements at Higher Maternal and Child Health Risk in Mumbai

    Get PDF
    The communities who live in urban informal settlements are diverse, as are their environmental conditions. Characteristics include inadequate access to safe water and sanitation, poor quality of housing, overcrowding, and insecure residential status. Interventions to improve health should be equity-driven and target those at higher risk, but it is not clear how to prioritise informal settlements for health action. In implementing a maternal and child health programme in Mumbai, India, we had conducted a detailed vulnerability assessment which, though important, was time-consuming and may have included collection of redundant information. Subsequent data collection allowed us to examine three issues: whether community environmental characteristics were associated with maternal and newborn healthcare and outcomes; whether it was possible to develop a triage scorecard to rank the health vulnerability of informal settlements based on a few rapidly observable characteristics; and whether the scorecard might be useful for future prioritisation. The City Initiative for Newborn Health documented births in 48 urban slum areas over 2Β years. Information was collected on maternal and newborn care and mortality, and also on household and community environment. We selected three outcomesβ€”less than three antenatal care visits, home delivery, and neonatal mortalityβ€”and used logistic regression and classification and regression tree analysis to test their association with rapidly observable environmental characteristics. We developed a simple triage scorecard and tested its utility as a means of assessing maternal and newborn health risk. In analyses on a sample of 10,754 births, we found associations of health vulnerability with inadequate access to water, toilets, and electricity; non-durable housing; hazardous location; and rental tenancy. A simple scorecard based on these had limited sensitivity and positive predictive value, but relatively high specificity and negative predictive value. The scorecard needs further testing in a range of urban contexts, but we intend to use it to identify informal settlements in particular need of family health interventions in a subsequent program

    Quick and Clean Cloning: A Ligation-Independent Cloning Strategy for Selective Cloning of Specific PCR Products from Non-Specific Mixes

    Get PDF
    We have developed an efficient strategy for cloning of PCR products that contain an unknown region flanked by a known sequence. As with ligation-independent cloning, the strategy is based on homology between sequences present in both the vector and the insert. However, in contrast to ligation-independent cloning, the cloning vector has homology with only one of the two primers used for amplification of the insert. The other side of the linearized cloning vector has homology with a sequence present in the insert, but nested and non-overlapping with the gene-specific primer used for amplification. Since only specific products contain this sequence, but none of the non-specific products, only specific products can be cloned. Cloning is performed using a one-step reaction that only requires incubation for 10 minutes at room temperature in the presence of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. The reaction mix is then directly transformed into E. coli where the annealed vector-insert complex is repaired and ligated. We have tested this method, which we call quick and clean cloning (QC cloning), for cloning of the variable regions of immunoglobulins expressed in non-Hodgkin lymphoma tumor samples. This method can also be applied to identify the flanking sequence of DNA elements such as T-DNA or transposon insertions, or be used for cloning of any PCR product with high specificity

    Modeling inflammation and oxidative stress in gastrointestinal disease development using novel organotypic culture systems

    Get PDF
    Gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), graft-versus-host disease (GVHD), and inflammatory bowel diseases such as ulcerative colitis and Crohn's disease are common human gastrointestinal diseases that share inflammation as a key driver for their development. A general outcome resulting from these chronic inflammatory conditions is increased oxidative stress. Oxidative stress is caused by the generation of reactive oxygen and nitrogen species that are part of the normal inflammatory response, but are also capable of damaging cellular DNA, protein, and organelles. Damage to DNA can include DNA strand breaks, point mutations due to DNA adducts, as well as alterations in methylation patterns leading to activation of oncogenes or inactivation of tumor suppressors. There are a number of significant long-term consequences associated with chronic oxidative stress, most notably cancer. Infiltrating immune cells and stromal components of tissue including fibroblasts contribute to dynamic changes occurring in tissue related to disease development. Immune cells can potentiate oxidative stress, and fibroblasts have the capacity to contribute to advanced growth and proliferation of the epithelium and any resultant cancers. Disease models for GERD, BE, GVHD, and ulcerative colitis based on three-dimensional human cell and tissue culture systems that recapitulate in vivo growth and differentiation in inflammatory-associated microphysiological environments would enhance our understanding of disease progression and improve our ability to test for disease-prevention strategies. The development of physiologically relevant, human cell-based culture systems is therefore a major focus of our research. These novel models will be of enormous value, allowing us to test hypotheses and advance our understanding of these disorders, and will have a translational impact allowing us to more rapidly develop therapeutic and chemopreventive agents. In summary, this work to develop advanced human cell-based models of inflammatory conditions will greatly improve our ability to study, prevent, and treat GERD, BE, GVHD, and inflammatory bowel disease. The work will also foster the development of novel therapeutic and preventive strategies that will improve patient care for these important clinical conditions

    Global Analyses of Small Interfering RNAs Derived from Bamboo mosaic virus and Its Associated Satellite RNAs in Different Plants

    Get PDF
    Background: Satellite RNAs (satRNAs), virus parasites, are exclusively associated with plant virus infection and have attracted much interest over the last 3 decades. Upon virus infection, virus-specific small interfering RNAs (vsiRNAs) are produced by dicer-like (DCL) endoribonucleases for anti-viral defense. The composition of vsiRNAs has been studied extensively; however, studies of satRNA-derived siRNAs (satsiRNAs) or siRNA profiles after satRNA co-infection are limited. Here, we report on the small RNA profiles associated with infection with Bamboo mosaic virus (BaMV) and its two satellite RNAs (satBaMVs) in Nicotiana benthamiana and Arabidopsis thaliana. Methodology/Principal Findings: Leaves of N. benthamiana or A. thaliana inoculated with water, BaMV alone or coinoculated with interfering or noninterfering satBaMV were collected for RNA extraction, then large-scale Solexa sequencing. Up to about 20% of total siRNAs as BaMV-specific siRNAs were accumulated in highly susceptible N. benthamiana leaves inoculated with BaMV alone or co-inoculated with noninterfering satBaMV; however, only about 0.1% of vsiRNAs were produced in plants co-infected with interfering satBaMV. The abundant region of siRNA distribution along BaMV and satBaMV genomes differed by host but not by co-infection with satBaMV. Most of the BaMV and satBaMV siRNAs were 21 or 22 nt, of both (+) and (-) polarities; however, a higher proportion of 22-nt BaMV and satBaMV siRNAs were generated in N. benthamiana than in A. thaliana. Furthermore, the proportion of non-viral 24-nt siRNAs was greatly increased in N. benthamiana after virus infection. Conclusions/Significance: The overall composition of vsiRNAs and satsiRNAs in the infected plants reflect the combined action of virus, satRNA and different DCLs in host plants. Our findings suggest that the structure and/or sequence demands of various DCLs in different hosts may result in differential susceptibility to the same virus. DCL2 producing 24-nt siRNAs under biotic stresses may play a vital role in the antiviral mechanism in N. benthamiana

    Preclinical Assessment of the Treatment of Second-Stage African Trypanosomiasis with Cordycepin and Deoxycoformycin

    Get PDF
    There is an urgent need to substitute the highly toxic arsenic compounds still in use for treatment of the encephalitic stage of African trypanosomiasis, a disease caused by infection with Trypanosoma brucei. We exploited the inability of trypanosomes to engage in de novo purine synthesis as a therapeutic target. Cordycepin was selected from a trypanocidal screen of a 2200-compound library. When administered together with the adenosine deaminase inhibitor deoxycoformycin, cordycepin cured mice inoculated with the human pathogenic subspecies T. brucei rhodesiense or T. brucei gambiense even after parasites had penetrated into the brain. Successful treatment was achieved by intraperitoneal, oral or subcutaneous administration of the compounds. Treatment with the doublet also diminished infection-induced cerebral inflammation. Cordycepin induced programmed cell death of the parasites. Although parasites grown in vitro with low doses of cordycepin gradually developed resistance, the resistant parasites lost virulence and showed no cross-resistance to trypanocidal drugs in clinical use. Our data strongly support testing cordycepin and deoxycoformycin as an alternative for treatment of second-stage and/or melarsoprol-resistant HAT
    • …
    corecore