9 research outputs found

    Cancer Risks near Nuclear Facilities: The Importance of Research Design and Explicit Study Hypotheses

    Get PDF
    BackgroundIn April 2010, the U.S. Nuclear Regulatory Commission asked the National Academy of Sciences to update a 1990 study of cancer risks near nuclear facilities. Prior research on this topic has suffered from problems in hypothesis formulation and research design.ObjectivesWe review epidemiologic principles used in studies of generic exposure–response associations and in studies of specific sources of exposure. We then describe logical problems with assumptions, formation of testable hypotheses, and interpretation of evidence in previous research on cancer risks near nuclear facilities.DiscussionAdvancement of knowledge about cancer risks near nuclear facilities depends on testing specific hypotheses grounded in physical and biological mechanisms of exposure and susceptibility while considering sample size and ability to adequately quantify exposure, ascertain cancer cases, and evaluate plausible confounders.ConclusionsNext steps in advancing knowledge about cancer risks near nuclear facilities require studies of childhood cancer incidence, focus on in utero and early childhood exposures, use of specific geographic information, and consideration of pathways for transport and uptake of radionuclides. Studies of cancer mortality among adults, cancers with long latencies, large geographic zones, and populations that reside at large distances from nuclear facilities are better suited for public relations than for scientific purposes

    The Chernobyl childhood leukemia study: background & lessons learned

    Get PDF
    Many challenges emerged during completion of a study to examine radiation dose and acute leukemia among children in areas of the former Soviet Union. In an era of globalization, our experiences might benefit others involved in multinational investigations

    A Perspective on the Scientific, Philosophical, and Policy Dimensions of Hormesis

    Get PDF
    The hormesis concept has broad implications for biology and the biomedical sciences. This perspective on hormesis concentrates on toxicology and toxicological risk assessment and secondarily explores observations from other fields. It considers the varied manifestations of hormesis in the context of a broad family of biological stress responses. Evidence for hormesis is reviewed, and the hormesis model is contrasted with more widely accepted dose-response models in toxicology: a linear nonthreshold (LNT) model for mutagenesis and carcinogenesis, and a threshold model for most other toxicologic effects. Scientific, philosophical, and political objections to the hormesis concept are explored, and complications in the hormesis concept are analyzed. The review concludes with a perspective on the current state of hormesis and challenges that the hormesis model poses for risk assessment

    Uranium from Africa – An overview on past and current mining activities: Re-appraising associated risks and chances in a global context

    No full text

    Arsenic, asbestos and radon: emerging players in lung tumorigenesis

    Get PDF
    <p>Abstract</p> <p>The cause of lung cancer is generally attributed to tobacco smoking. However lung cancer in never smokers accounts for 10 to 25% of all lung cancer cases. Arsenic, asbestos and radon are three prominent non-tobacco carcinogens strongly associated with lung cancer. Exposure to these agents can lead to genetic and epigenetic alterations in tumor genomes, impacting genes and pathways involved in lung cancer development. Moreover, these agents not only exhibit unique mechanisms in causing genomic alterations, but also exert deleterious effects through common mechanisms, such as oxidative stress, commonly associated with carcinogenesis. This article provides a comprehensive review of arsenic, asbestos, and radon induced molecular mechanisms responsible for the generation of genetic and epigenetic alterations in lung cancer. A better understanding of the mode of action of these carcinogens will facilitate the prevention and management of lung cancer related to such environmental hazards.</p

    Acute lymphoblastic leukemia in children: An update of clinical, biological, and therapeutic aspects

    No full text
    corecore