15 research outputs found

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    NMR relaxation analysis of pharmaceutically active peptides

    No full text
    Nuclear spin relaxation (NSR) is a powerful approach for studying dynamics at the ps-ns timescale, and is typically used to characterize fundamental biophysical phenomena such as bond vibrations and fluctuations, which affect the activity of the molecule in question. Here, this chapter will look to the application of NSR to study peptides, which are short chains of amino acids and have shown promise as modalities in drug design. This chapter will begin with a brief description of theoretical and practical aspects related to the use of NSR, such as experimental considerations during data acquisition and processing. As an example of this approach for studying peptide dynamics, this chapter will step through a case study that examines the effect of backbone cyclization on the dynamics of polycyclic disulfide-rich peptides. This case study will focus on a cyclic and linear variant of a promising drug scaffold isolated from sunflower seeds called SFTI-1 (sunflower trypsin inhibitor-1), which is a naturally backbone-cyclic peptide that comprises one cross-bracing disulfide bond

    Comprehensive Identification of Salmonella enterica Serovar Typhimurium Genes Required for Infection of BALB/c Mice

    Get PDF
    Genes required for infection of mice by Salmonella Typhimurium can be identified by the interrogation of random transposon mutant libraries for mutants that cannot survive in vivo. Inactivation of such genes produces attenuated S. Typhimurium strains that have potential for use as live attenuated vaccines. A quantitative screen, Transposon Mediated Differential Hybridisation (TMDH), has been developed that identifies those members of a large library of transposon mutants that are attenuated. TMDH employs custom transposons with outward-facing T7 and SP6 promoters. Fluorescently-labelled transcripts from the promoters are hybridised to whole-genome tiling microarrays, to allow the position of the transposon insertions to be determined. Comparison of microarray data from the mutant library grown in vitro (input) with equivalent data produced after passage of the library through mice (output) enables an attenuation score to be determined for each transposon mutant. These scores are significantly correlated with bacterial counts obtained during infection of mice using mutants with individual defined deletions of the same genes. Defined deletion mutants of several novel targets identified in the TMDH screen are effective live vaccines
    corecore