128 research outputs found

    What happens if you single out? An experiment

    Get PDF
    We present an experiment investigating the effects of singling out an individual on trust and trustworthiness. We find that (a) trustworthiness falls if there is a singled out subject; (b) non-singled out subjects discriminate against the singled out subject when they are not responsible of the distinct status of this person; (c) under a negative frame, the singled out subject returns significantly less; (d) under a positive frame, the singled out subject behaves bimodally, either selecting very low or very high return rates. Overall, singling out induces a negligible effect on trust but is potentially disruptive for trustworthiness

    PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer

    Get PDF
    Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN- loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies

    Perioperative risk stratification in non cardiac surgery: role of pharmacological stress echocardiography

    Get PDF
    Perioperative ischemia is a frequent event in patients undergoing major non-cardiac vascular or general surgery. This is in agreement with clinical, pathophysiological, and epidemiological evidence and constitutes an additional diagnostic therapeutic factor in the assessment of these patients. Form a clinical standpoint, it is well known that multidistrict disease, especially at the coronary level, is a severe aggravation of the operative risk. From a pathophysiological point of view, however, surgery creates conditions able to unmask coronary artery disease. Prolonged hypotension, hemorrhages, and haemodynamic stresses caused by aortic clamping and unclamping during major vascular surgery are the most relevant factors endangering the coronary circulation with critical stenoses. From the epidemiological standpoint, coronary disease is known to be the leading cause of perioperative mortality and morbidity following vascular and general surgery: The diagnostic therapeutic corollary of these considerations is that coronary artery disease – and therefore the perioperative risk – in these patients has to be identified in an effective way preoperatively

    Girls' disruptive behavior and its relationship to family functioning: A review

    Get PDF
    Although a number of reviews of gender differences in disruptive behavior and parental socialization exist, we extend this literature by addressing the question of differential development among girls and by placing both disruptive behavior and parenting behavior in a developmental framework. Clarifying the heterogeneity of development in girls is important for developing and optimizing gender-specific prevention and treatment programs. In the current review, we describe the unique aspects of the development of disruptive behavior in girls and explore how the gender-specific development of disruptive behavior can be explained by family linked risk and protective processes. Based on this review, we formulate a gender-specific reciprocal model of the influence of social factors on the development of disruptive behavior in girls in order to steer further research and better inform prevention and treatment programs

    Selective Deletion of PTEN in Dopamine Neurons Leads to Trophic Effects and Adaptation of Striatal Medium Spiny Projecting Neurons

    Get PDF
    The widespread distribution of the tumor suppressor PTEN in the nervous system suggests a role in a broad range of brain functions. PTEN negatively regulates the signaling pathways initiated by protein kinase B (Akt) thereby regulating signals for growth, proliferation and cell survival. Pten deletion in the mouse brain has revealed its role in controlling cell size and number. In this study, we used Cre-loxP technology to specifically inactivate Pten in dopamine (DA) neurons (Pten KO mice). The resulting mutant mice showed neuronal hypertrophy, and an increased number of dopaminergic neurons and fibers in the ventral mesencephalon. Interestingly, quantitative microdialysis studies in Pten KO mice revealed no alterations in basal DA extracellular levels or evoked DA release in the dorsal striatum, despite a significant increase in total DA tissue levels. Striatal dopamine receptor D1 (DRD1) and prodynorphin (PDyn) mRNA levels were significantly elevated in KO animals, suggesting an enhancement in neuronal activity associated with the striatonigral projection pathway, while dopamine receptor D2 (DRD2) and preproenkephalin (PPE) mRNA levels remained unchanged. In addition, PTEN inactivation protected DA neurons and significantly enhanced DA-dependent behavioral functions in KO mice after a progressive 6OHDA lesion. These results provide further evidence about the role of PTEN in the brain and suggest that manipulation of the PTEN/Akt signaling pathway during development may alter the basal state of dopaminergic neurotransmission and could provide a therapeutic strategy for the treatment of Parkinson's disease, and other neurodegenerative disorders

    Production of ultrasonic vocalizations by Peromyscus mice in the wild

    Get PDF
    BACKGROUND: There has been considerable research on rodent ultrasound in the laboratory and these sounds have been well quantified and characterized. Despite the value of research on ultrasound produced by mice in the lab, it is unclear if, and when, these sounds are produced in the wild, and how they function in natural habitats. RESULTS: We have made the first recordings of ultrasonic vocalizations produced by two free-living species of mice in the genus Peromyscus (P. californicus and P. boylii) on long term study grids in California. Over 6 nights, we recorded 65 unique ultrasonic vocalization phrases from Peromyscus. The ultrasonic vocalizations we recorded represent 7 different motifs. Within each motif, there was considerable variation in the acoustic characteristics suggesting individual and contextual variation in the production of ultrasound by these species. CONCLUSION: The discovery of the production of ultrasonic vocalizations by Peromyscus in the wild highlights an underappreciated component in the behavior of these model organisms. The ability to examine the production of ultrasonic vocalizations in the wild offers excellent opportunities to test hypotheses regarding the function of ultrasound produced by rodents in a natural context

    Identification of a Classical Bipartite Nuclear Localization Signal in the Drosophila TEA/ATTS Protein Scalloped

    Get PDF
    Drosophila melanogaster wing development has been shown to rely on the activity of a complex of two proteins, Scalloped (Sd) and Vestigial (Vg). Within this complex, Sd is known to provide DNA binding though its TEA/ATTS domain, while Vg modulates this binding and provides transcriptional activation through N- and C-terminal activation domains. There is also evidence that Sd is required for the nuclear translocation of Vg. Indeed, a candidate sequence which shows consensus to the bipartite family of nuclear localization signals (NLSs) has been identified within Sd previously, though it is not known if it is functional, or if additional unpredicted signals that mediate nuclear transport exist within the protein. By expressing various enhanced green fluorescent protein (eGFP) tagged constructs within Drosophila S2 cells, we demonstrate that this NLS is indeed functional and necessary for the proper nuclear localization of Sd. Additionally, the region containing the NLS is critical for the wildtype function of ectopically expressed Sd, in the context of wing development. Using site-directed mutagenesis, we have identified a group of five amino acids within this NLS which is critical for its function, as well as another group of two which is of lesser importance. Together with data that suggests that this sequence mediates interactions with Importin-α3, we conclude that the identified NLS is likely a classical bipartite signal. Further dissection of Sd has also revealed that a large portion of the C-terminal domain of the protein is required its proper nuclear localization. Finally, a Leptomycin B (LB) sensitive signal which appears to facilitate nuclear export is identified, raising the possibility that Sd also contains a nuclear export signal (NES)

    The P2 Receptor Antagonist PPADS Supports Recovery from Experimental Stroke In Vivo

    Get PDF
    BACKGROUND: After ischemia of the CNS, extracellular adenosine 5'-triphosphate (ATP) can reach high concentrations due to cell damage and subsequent increase of membrane permeability. ATP may cause cellular degeneration and death, mediated by P2X and P2Y receptors. METHODOLOGY/PRINCIPAL FINDINGS: The effects of inhibition of P2 receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) on electrophysiological, functional and morphological alterations in an ischemia model with permanent middle cerebral artery occlusion (MCAO) were investigated up to day 28. Spontaneously hypertensive rats received PPADS or vehicle intracerebroventricularly 15 minutes prior MCAO for up to 7 days. The functional recovery monitored by qEEG was improved by PPADS indicated by an accelerated recovery of ischemia-induced qEEG changes in the delta and alpha frequency bands along with a faster and sustained recovery of motor impairments. Whereas the functional improvements by PPADS were persistent at day 28, the infarct volume measured by magnetic resonance imaging and the amount of TUNEL-positive cells were significantly reduced by PPADS only until day 7. Further, by immunohistochemistry and confocal laser scanning microscopy, we identified both neurons and astrocytes as TUNEL-positive after MCAO. CONCLUSION: The persistent beneficial effect of PPADS on the functional parameters without differences in the late (day 28) infarct size and apoptosis suggests that the early inhibition of P2 receptors might be favourable for the maintenance or early reconstruction of neuronal connectivity in the periinfarct area after ischemic incidents

    Intergenerational Transmission of Multiple Problem Behaviors: Prospective Relationships between Mothers and Daughters

    Get PDF
    Much of the research examining intergenerational continuity of problems from mother to offspring has focused on homotypic continuity (e.g., depression), despite the fact that different types of mental health problems tend to cluster in both adults and children. It remains unclear whether mothers with multiple mental health problems compared to mothers with fewer or no problems are more likely to have daughters with multiple mental health problems during middle childhood (ages 7 to 11). Six waves of maternal and child data from the Pittsburgh Girls Study (n = 2,451) were used to examine the specificity of effects of maternal psychopathology on child adjustment. Child multiple mental health problems comprised disruptive behavior, ADHD symptoms, depressed mood, anxiety symptoms and somatic complaints, while maternal multiple mental health problems consisted of depression, prior conduct problems and somatic complaints. Generalized Estimating Equations (GEE) was used to examine the prospective relationships between mother’s single and multiple mental health problems and their daughter’s single and multiple mental health problems across the elementary school-aged period (ages 7–11 years). The results show that multiple mental health problems in the mothers predicted multiple mental health problems in the daughters even when earlier mental health problem of the daughters, demographic factors, and childrearing practices were controlled. Maternal low parental warmth and harsh punishment independently contributed to the prediction of multiple mental health problems in their daughter, but mediation analyses showed that the contribution of parenting behaviors to the explanation of girls’ mental health problems was small

    Convergent evolution of pain-inducing defensive venom components in spitting cobras

    Get PDF
    Convergent evolution provides insights into the selective drivers underlying evolutionary change. Snake venoms, with a direct genetic basis and clearly defined functional phenotype, provide a model system for exploring the repeated evolution of adaptations. While snakes use venom primarily for predation, and venom composition often reflects diet specificity, three lineages of cobras have independently evolved the ability to spit venom at adversaries. Using gene, protein, and functional analyses, we show that the three spitting lineages possess venoms characterized by an up-regulation of phospholipase A2 (PLA2) toxins, which potentiate the action of preexisting venom cytotoxins to activate mammalian sensory neurons and cause enhanced pain. These repeated independent changes provide a fascinating example of convergent evolution across multiple phenotypic levels driven by selection for defense
    • …
    corecore