26 research outputs found
Metabolic, productive and reproductive responses to postpartum short-term supplementation in primiparous beef cows
Xenogeneic transplantation and tolerance in the era of CRISPR-Cas9
Purpose of Review: The use of genetically modified donor pigs has been integral to recent major advances in xenograft survival in preclinical nonhuman primate models. CRISPR-Cas9 gene editing technology has dramatically accelerated the development of multimodified pigs. This review examines the current and projected impact of CRISPR-Cas9-mediated donor modification on preventing rejection and potentially promoting tolerance of porcine xenografts. Recent Findings: CRISPR-Cas9 has been used to engineer several genetic modifications relevant to xenotransplantation into pigs, including glycosyltransferase knockouts (GGTA1, CMAH, β4GALNT2, A3GALT2 and combinations thereof), other knockouts (SLA-I, ULBP1, PERV and GHR), and one knock-in (anti-CD2 monoclonal antibody transgene knocked into GGTA1). Although the use of these pigs as donors in preclinical nonhuman primate models has been limited to a single study to date, in-vitro analysis of their cells has provided invaluable information. For example, deletion of three of the glycosyltransferases progressively decreased the binding and cytotoxicity of preexisting immunoglobulin G and immunoglobulin M in human sera, suggesting that this 'triple-KO' pig could be a platform for clinical xenotransplantation. Summary: CRISPR-Cas9 enables the rapid generation of gene-edited pigs containing multiple tailored genetic modifications that are anticipated to have a positive impact on the efficacy and safety of pig-to-human xenotransplantation.Peter J. Cowan, Wayne J. Hawthorne and Mark B. Nottl
