92 research outputs found

    Musical Ratios in Sounds from the Human Cochlea

    Get PDF
    The physiological roots of music perception are a matter of long-lasting debate. Recently light on this problem has been shed by the study of otoacoustic emissions (OAEs), which are weak sounds generated by the inner ear following acoustic stimulation and, sometimes, even spontaneously. In the present study, a high-resolution time–frequency method called matching pursuit was applied to the OAEs recorded from the ears of 45 normal volunteers so that the component frequencies, amplitudes, latencies, and time-spans could be accurately determined. The method allowed us to find that, for each ear, the OAEs consisted of characteristic frequency patterns that we call resonant modes. Here we demonstrate that, on average, the frequency ratios of the resonant modes from all the cochleas studied possessed small integer ratios. The ratios are the same as those found by Pythagoras as being most musically pleasant and which form the basis of the Just tuning system. The statistical significance of the results was verified against a random distribution of ratios. As an explanatory model, there are attractive features in a recent theory that represents the cochlea as a surface acoustic wave resonator; in this situation the spacing between the rows of hearing receptors can create resonant cavities of defined lengths. By adjusting the geometry and the lengths of the resonant cavities, it is possible to generate the preferred frequency ratios we have found here. We conclude that musical perception might be related to specific geometrical and physiological properties of the cochlea

    The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

    Get PDF
    Background: The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. Results: Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole genome mutation screening in Candida albicans and aeruginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory. Conclusion: We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens

    The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

    Get PDF
    Background The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. Results Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory. Conclusion We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.Peer reviewe

    Structural Determination and Chemical Synthesis of the N-Glycan from the Hyperthermophilic Archaeon Thermococcus kodakarensis

    No full text
    Asparagine-linked protein glycosylations (N-glycosylations) are one of the most abundant post-translational modifications and are essential for various biological phenomena. Herein, we describe the isolation, structural determination, and chemical synthesis of the N-glycan from the hyperthermophilic archaeon Thermococcus kodakarensis. The N-glycan from the organism possesses a unique structure including myo-inositol, which has not been found in previously characterized N-glycans. In this structure, myo-inositol is highly glycosylated and linked with a disaccharide unit through a phosphodiester. The straightforward synthesis of this glycan was accomplished through diastereoselective phosphorylation and phosphodiester construction by SN2 coupling. Considering the early divergence of hyperthermophilic organisms in evolution, this study can be expected to open the door to approaching the primitive function of glycan modification at the molecular level

    The comparative role of key environmental factors in determining savanna productivity and carbon fluxes: a review, with special reference to northern Australia

    Get PDF
    Terrestrial ecosystems are highly responsive to their local environments and, as such, the rate of carbon uptake both in shorter and longer timescales and different spatial scales depends on local environmental drivers. For savannas, the key environmental drivers controlling vegetation productivity are water and nutrient availability, vapour pressure deficit (VPD), solar radiation and fire. Changes in these environmental factors can modify the carbon balance of these ecosystems. Therefore, understanding the environmental drivers responsible for the patterns (temporal and spatial) and processes (photosynthesis and respiration) has become a central goal in terrestrial carbon cycle studies. Here we have reviewed the various environmental controls on the spatial and temporal patterns on savanna carbon fluxes in northern Australia. Such studies are critical in predicting the impacts of future climate change on savanna productivity and carbon storage
    corecore