724 research outputs found

    Characteristics and transformation of Pacific winter water on the Chukchi Sea shelf in late spring

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 7153– 7177, doi: 10.1029/2019JC015261.Data from a late spring survey of the northeast Chukchi Sea are used to investigate various aspects of newly ventilated winter water (NVWW). More than 96% of the water sampled on the shelf was NVWW, the saltiest (densest) of which tended to be in the main flow pathways on the shelf. Nearly all of the hydrographic profiles on the shelf displayed a two‐layer structure, with a surface mixed layer and bottom boundary layer separated by a weak density interface (on the order of 0.02 kg/m3). Using a polynya model to drive a one‐dimensional mixing model, it was demonstrated that, on average, the profiles would become completely homogenized within 14–25 hr when subjected to the March and April heat fluxes. A subset of the profiles would become homogenized when subjected to the May heat fluxes. Since the study domain contained numerous leads within the pack ice—many of them refreezing—and since some of the measured profiles were vertically uniform in density, this suggests that NVWW is formed throughout the Chukchi shelf via convection within small openings in the ice. This is consistent with the result that the salinity signals of the NVWW along the central shelf pathway cannot be explained solely by advection from Bering Strait or via modification within large polynyas. The local convection would be expected to stir nutrients into the water column from the sediments, which explains the high nitrate concentrations observed throughout the shelf. This provides a favorable initial condition for phytoplankton growth on the Chukchi shelf.The authors are indebted to Commanding Officer John Reeves, Executive Officer Gregory Stanclik, Operations Officer Jacob Cass, and the entire crew of the USCGC Healy for their hard work and dedication in making the SUBICE cruise a success. We also acknowledge Scott Hiller for his assistance with Healy's meteorological data. We thank an anonymous reviewer for helpful input that improved the paper. Funding for A. P., R. P., C. N., and F. B. was provided by the National Science Foundation (NSF) under grant PLR‐1303617. K. M. was funded by the Natural Sciences and Engineering Research Council of Canada. K. V. acknowledges the Bergen Research Foundation under Grant BFS2016REK01. K. A. was supported by the NSF grant PLR‐1304563. The CTD and shipboard ADCP data are available from https://www.rvdata.us/search/cruise/HLY1401, and the nutrient data can be accessed from https://arcticdata.io/catalog/view/doi:10.18739/A2RG3Z and http://ocean.stanford.edu/subice/. The shipboard meteorological data reside at http://ocean.stanford.edu/subice/.2020-04-1

    Differences between regular and random order of updates in damage spreading simulations

    Get PDF
    We investigate the spreading of damage in the three-dimensional Ising model by means of large-scale Monte-Carlo simulations. Within the Glauber dynamics we use different rules for the order in which the sites are updated. We find that the stationary damage values and the spreading temperature are different for different update order. In particular, random update order leads to larger damage and a lower spreading temperature than regular order. Consequently, damage spreading in the Ising model is non-universal not only with respect to different update algorithms (e.g. Glauber vs. heat-bath dynamics) as already known, but even with respect to the order of sites.Comment: final version as published, 4 pages REVTeX, 2 eps figures include

    Ability-based view in action: a software corporation study

    Get PDF
    This research investigates antecedents, developments and consequences of dynamic capabilities in an organization. It contributes by searching theoretical and empirical answers to the questions: (a) What are the antecedents which can provide an organization with dynamic and ordinary capabilities?; (b) How do these antecedents contribute to create capabilities in an organization?; (c) How do they affect an organization's competitive advantage?; (d) Can we assess and measure the antecedents and consequences to an organization? From a first (theoretical) perspective, this paper searches answers to the first, second and third questions by reviewing concepts of an ability-based view of organizations that involves the abilities of cognition, intelligence, autonomy, learning and knowledge management, and which contributes to explain the dynamic behavior of the firm in the pursuit of competitive advantage. From a second (empirical) perspective, this paper reinforces and delivers findings to the second, third and fourth questions by presenting a case study that evidences the ability-based view in action in a software corporation, where it contributes by investigating: (a) the development of organizational capabilities; (b) the effects of the new capabilities on the organization; and (c) the assessment and measurement of the abilities and consequences

    The North Icelandic Jet and its relationship to the North Icelandic Irminger Current

    Get PDF
    Author Posting. © The Authors, 2017. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 75 (2017): 605-639, doi:10.1357/002224017822109505.Shipboard hydrographic and velocity sections are used to quantify aspects of the North Icelandic Jet (NIJ), which transports dense overflow water to Denmark Strait, and the North Icelandic Irminger Current (NIIC), which imports Atlantic water to the Iceland Sea. The mean transports of the two currents are comparable, in line with previous notions that there is a local overturning cell in the Iceland Sea that transforms the Atlantic water to dense overflow water. As the NIJ and NIIC flow along the north side of Iceland, they appear to share a common front when the bottom topography steers them close together, but even when they are separate there is a poleward flow inshore of the NIJ. The interannual variability in salinity of the inflowing NIIC is in phase with that of the outflowing NIJ. It is suggested, however, that the NIIC signal does not dictate that of the NIJ. Instead, the combination of liquid and solid freshwater flux from the east Greenland boundary can account for the observed net freshening of the NIIC to the NIJ for the densest half of the overturning circulation in the northwest Iceland Sea. This implies that the remaining overturning must occur in a different geographic area, consistent with earlier model results. The year-to-year variability in salinity of the NIJ can be explained by applying annual anomalies of evaporation minus precipitation over the Iceland Sea to a one-dimensional mixing model. These anomalies vary in phase with the wind stress curl over the North Atlantic subpolar gyre, which previous studies have shown drives the interannual variation in salinity of the inflowing NIIC.Funding for the project was provided by the National Science Foundation under grants OCE-1558742 (RSP, MAS, DJT, CN), OCE-1433170 (MAS), and OCE-0959381 (DM); the Norwegian Research Council under grant agreement no. 231647 (KV); the Bergen Research Foundation (KV); the European Union Seventh Framework Programme (FP7 2007-2013) under grant agreement 308299 (NACLIM project, KV, HV, and SJ); and the Natural Sciences and Engineering Research Council of Canada (GWKM)

    Tunneling and propagation of vacuum bubbles on dynamical backgrounds

    Full text link
    In the context of bubble universes produced by a first-order phase transition with large nucleation rates compared to the inverse dynamical time scale of the parent bubble, we extend the usual analysis to non-vacuum backgrounds. In particular, we provide semi-analytic and numerical results for the modified nucleation rate in FLRW backgrounds, as well as a parameter study of bubble walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the thin-wall approximation. We show that in our model, matter in the background often prevents bubbles from successful expansion and forces them to collapse. For cases where they do expand, we give arguments why the effects on the interior spacetime are small for a wide range of reasonable parameters and discuss the limitations of the employed approximations.Comment: 29 pages, 8 figures, typos corrected, matches published versio

    Stress distribution and the fragility of supercooled melts

    Full text link
    We formulate a minimal ansatz for local stress distribution in a solid that includes the possibility of strongly anharmonic short-length motions. We discover a broken-symmetry metastable phase that exhibits an aperiodic, frozen-in stress distribution. This aperiodic metastable phase is characterized by many distinct, nearly degenerate configurations. The activated transitions between the configurations are mapped onto the dynamics of a long range classical Heisenberg model with 6-component spins and anisotropic couplings. We argue the metastable phase corresponds to a deeply supercooled non-polymeric, non-metallic liquid, and further establish an order parameter for the glass-to-crystal transition. The spin model itself exhibits a continuous range of behaviors between two limits corresponding to frozen-in shear and uniform compression/dilation respectively. The two regimes are separated by a continuous transition controlled by the anisotropy in the spin-spin interaction, which is directly related to the Poisson ratio σ\sigma of the material. The latter ratio and the ultra-violet cutoff of the theory determine the liquid configurational entropy. Our results suggest that liquid's fragility depends on the Poisson ratio in a non-monotonic way. The present ansatz provides a microscopic framework for computing the configurational entropy and relaxational spectrum of specific substances.Comment: 11 pages, 5 figures, Final version published in J Phys Chem

    Ready ... Go: Amplitude of the fMRI Signal Encodes Expectation of Cue Arrival Time

    Get PDF
    What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA). Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the “go” signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a “countdown” condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in “no-go” conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals
    • 

    corecore