1,002 research outputs found

    Extracting the rho meson wavefunction from HERA data

    Full text link
    We extract the light-cone wavefunctions of the rho meson using the HERA data on diffractive rho photoproduction. We find good agreement with predictions for the distribution amplitude based on QCD sum rules and from the lattice. We also find that the data prefer a transverse wavefunction with enhanced end-point contributions.Comment: 13 pages, 7 figures, significant improvements over the original version with a new section on distribution amplitudes adde

    Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes

    No full text
    Bicarbonate is involved in a wide range of biological processes, which include respiration, regulation of intracellular pH and fertilization. In this study we use a combination of NMR spectroscopy and ion-selective electrode techniques to show that the natural product prodigiosin, a tripyrrolic molecule produced by microorganisms such as Streptomyces and Serratia, facilitates chloride/bicarbonate exchange (antiport) across liposomal membranes. Higher concentrations of simple synthetic molecules based on a 4,6-dihydroxyisophthalamide core are also shown to facilitate this antiport process. Although it is well known that proteins regulate Cl-/HCO3- exchange in cells, these results suggest that small molecules may also be able to regulate the concentration of these anions in biological systems

    Beyond Gross-Pitaevskii Mean Field Theory

    Full text link
    A large number of effects related to the phenomenon of Bose-Einstein Condensation (BEC) can be understood in terms of lowest order mean field theory, whereby the entire system is assumed to be condensed, with thermal and quantum fluctuations completely ignored. Such a treatment leads to the Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although this theory works remarkably well for a broad range of experimental parameters, a more complete treatment is required for understanding various experiments, including experiments with solitons and vortices. Such treatments should include the dynamical coupling of the condensate to the thermal cloud, the effect of dimensionality, the role of quantum fluctuations, and should also describe the critical regime, including the process of condensate formation. The aim of this Chapter is to give a brief but insightful overview of various recent theories, which extend beyond the GPE. To keep the discussion brief, only the main notions and conclusions will be presented. This Chapter generalizes the presentation of Chapter 1, by explicitly maintaining fluctuations around the condensate order parameter. While the theoretical arguments outlined here are generic, the emphasis is on approaches suitable for describing single weakly-interacting atomic Bose gases in harmonic traps. Interesting effects arising when condensates are trapped in double-well potentials and optical lattices, as well as the cases of spinor condensates, and atomic-molecular coupling, along with the modified or alternative theories needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer Verlag

    Benzoate Catabolite Repression of the Phenol Degradation in Acinetobacter calcoaceticus PHEA-2

    Get PDF
    Acinetobacter calcoaceticus PHEA-2 exhibited a delayed utilization of phenol in the presence of benzoate. Benzoate supplementation completely inhibited phenol degradation in a benzoate 1,2-dioxygenase knockout mutant. The mphR encoding the transcriptional activator and mphN encoding the largest subunit of multi-component phenol hydroxylase in the benA mutant were significantly downregulated (about 7- and 70-fold) on the basis of mRNA levels when benzoate was added to the medium. The co-transformant assay of E. coli JM109 with mphK::lacZ fusion and the plasmid pETR carrying mphR gene showed that MphR did not activate the mph promoter in the presence of benzoate. These results suggest that catabolite repression of phenol degradation by benzoate in A. calcoaceticus PHEA-2 is mediated by the inhibition of the activator protein MphR
    corecore