114 research outputs found

    Psychiatric gene discoveries shape evidence on ADHD's biology

    Get PDF
    The Wellcome Trust, MRC and Action Medical Research have provided ADHD research support for AT, PH, JM, NW, MJO, MCO; we also acknowledge support from NIH grants R1 3MH059126, R0 1MH62873 and R0 1MH081803 to Dr SV Faraone. Dr E Mick received funding through the UMass Center for Clinical and Translational Science (P30HD004147) supported by the NIH.A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P=5.4 × 10-4) and targets of the Fragile X mental retardation protein (P=0.0018). No enrichment was observed for activity-regulated cytoskeleton-associated protein (P=0.23) or N-methyl-D-aspartate receptor (P=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders.Publisher PDFPeer reviewe

    Repeated Quantum Error Detection in a Surface Code

    Full text link
    The realization of quantum error correction is an essential ingredient for reaching the full potential of fault-tolerant universal quantum computation. Using a range of different schemes, logical qubits can be redundantly encoded in a set of physical qubits. One such scalable approach is based on the surface code. Here we experimentally implement its smallest viable instance, capable of repeatedly detecting any single error using seven superconducting qubits, four data qubits and three ancilla qubits. Using high-fidelity ancilla-based stabilizer measurements we initialize the cardinal states of the encoded logical qubit with an average logical fidelity of 96.1%. We then repeatedly check for errors using the stabilizer readout and observe that the logical quantum state is preserved with a lifetime and coherence time longer than those of any of the constituent qubits when no errors are detected. Our demonstration of error detection with its resulting enhancement of the conditioned logical qubit coherence times in a 7-qubit surface code is an important step indicating a promising route towards the realization of quantum error correction in the surface code.Comment: 12 pages, 11 figure

    Hippocampal - diencephalic - cingulate networks for memory and emotion: An anatomical guide

    Get PDF
    This review brings together current knowledge from tract tracing studies to update and reconsider those limbic connections initially highlighted by Papez for their presumed role in emotion. These connections link hippocampal and parahippocampal regions with the mammillary bodies, the anterior thalamic nuclei, and the cingulate gyrus, all structures now strongly implicated in memory functions. An additional goal of this review is to describe the routes taken by the various connections within this network. The original descriptions of these limbic connections saw their interconnecting pathways forming a serial circuit that began and finished in the hippocampal formation. It is now clear that with the exception of the mammillary bodies, these various sites are multiply interconnected with each other, including many reciprocal connections. In addition, these same connections are topographically organised, creating further subsystems. This complex pattern of connectivity helps explain the difficulty of interpreting the functional outcome of damage to any individual site within the network. For these same reasons, Papez’s initial concept of a loop beginning and ending in the hippocampal formation needs to be seen as a much more complex system of hippocampal–diencephalic–cingulate connections. The functions of these multiple interactions might be better viewed as principally providing efferent information from the posterior medial temporal lobe. Both a subcortical diencephalic route (via the fornix) and a cortical cingulate route (via retrosplenial cortex) can be distinguished. These routes provide indirect pathways for hippocampal interactions with prefrontal cortex, with the preponderance of both sets of connections arising from the more posterior hippocampal regions. These multi-stage connections complement the direct hippocampal projections to prefrontal cortex, which principally arise from the anterior hippocampus, thereby creating longitudinal functional differences along the anterior–posterior plane of the hippocampus

    The co-occurrence of autistic and ADHD dimensions in adults: an etiological study in 17 770 twins

    Get PDF
    Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) often occur together. To obtain more insight in potential causes for the co-occurrence, this study examined the genetic and environmental etiology of the association between specific ASD and ADHD disorder dimensions. Self-reported data on ASD dimensions social and communication difficulties (ASDsc), and repetitive and restricted behavior and interests (ASDr), and ADHD dimensions inattention (IA), and hyperactivity/impulsivity (HI) were assessed in a community sample of 17 770 adult Swedish twins. Phenotypic, genetic and environmental associations between disorder dimensions were examined in a multivariate model, accounting for sex differences. ASDr showed the strongest associations with IA and HI in both sexes (rp 0.33 to 0.40). ASDsc also correlated moderately with IA (females rp 0.29 and males rp 0.35) but only modestly with HI (females rp 0.17 and males rp 0.20). Genetic correlations ranged from 0.22 to 0.64 and were strongest between ASDr and IA and HI. Sex differences were virtually absent. The ASDr dimension (reflecting restricted, repetitive and stereotyped patterns of behavior, interests and activities) showed the strongest association with dimensions of ADHD, on a phenotypic, genetic and environmental level. This study opens new avenues for molecular genetic research. As our findings demonstrated that genetic overlap between disorders is dimension-specific, future gene-finding studies on psychiatric comorbidity should focus on carefully selected genetically related dimensions of disorders

    Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in Multiple Countries

    Get PDF
    BACKGROUND:Estimates of dengue transmission intensity remain ambiguous. Since the majority of infections are asymptomatic, surveillance systems substantially underestimate true rates of infection. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing both the burden of disease from dengue and the likely impact of interventions. METHODOLOGY/PRINCIPAL FINDINGS:The force of infection (λ) and corresponding basic reproduction numbers (R0) for dengue were estimated from non-serotype (IgG) and serotype-specific (PRNT) age-stratified seroprevalence surveys identified from the literature. The majority of R0 estimates ranged from 1-4. Assuming that two heterologous infections result in complete immunity produced up to two-fold higher estimates of R0 than when tertiary and quaternary infections were included. λ estimated from IgG data were comparable to the sum of serotype-specific forces of infection derived from PRNT data, particularly when inter-serotype interactions were allowed for. CONCLUSIONS/SIGNIFICANCE:Our analysis highlights the highly heterogeneous nature of dengue transmission. How underlying assumptions about serotype interactions and immunity affect the relationship between the force of infection and R0 will have implications for control planning. While PRNT data provides the maximum information, our study shows that even the much cheaper ELISA-based assays would provide comparable baseline estimates of overall transmission intensity which will be an important consideration in resource-constrained settings

    Global warming and Bergmann’s rule: do central European passerines adjust their body size to rising temperatures?

    Get PDF
    Recent climate change has caused diverse ecological responses in plants and animals. However, relatively little is known about homeothermic animals’ ability to adapt to changing temperature regimes through changes in body size, in accordance with Bergmann’s rule. We used fluctuations in mean annual temperatures in south-west Germany since 1972 in order to look for direct links between temperature and two aspects of body size: body mass and flight feather length. Data from regionally born juveniles of 12 passerine bird species were analysed. Body mass and feather length varied significantly among years in eight and nine species, respectively. Typically the inter-annual changes in morphology were complexly non-linear, as was inter-annual variation in temperature. For six (body mass) and seven species (feather length), these inter-annual fluctuations were significantly correlated with temperature fluctuations. However, negative correlations consistent with Bergmann’s rule were only found for five species, either for body mass or feather length. In several of the species for which body mass and feather length was significantly associated with temperature, morphological responses were better predicted by temperature data that were smoothed across multiple years than by the actual mean breeding season temperatures of the year of birth. This was found in five species for body mass and three species for feather length. These results suggest that changes in body size may not merely be the result of phenotypic plasticity but may hint at genetically based microevolutionary adaptations

    Diminished Medial Prefrontal Activity behind Autistic Social Judgments of Incongruent Information

    Get PDF
    Individuals with autism spectrum disorders (ASD) tend to make inadequate social judgments, particularly when the nonverbal and verbal emotional expressions of other people are incongruent. Although previous behavioral studies have suggested that ASD individuals have difficulty in using nonverbal cues when presented with incongruent verbal-nonverbal information, the neural mechanisms underlying this symptom of ASD remain unclear. In the present functional magnetic resonance imaging study, we compared brain activity in 15 non-medicated adult males with high-functioning ASD to that of 17 age-, parental-background-, socioeconomic-, and intelligence-quotient-matched typically-developed (TD) male participants. Brain activity was measured while each participant made friend or foe judgments of realistic movies in which professional actors spoke with conflicting nonverbal facial expressions and voice prosody. We found that the ASD group made significantly less judgments primarily based on the nonverbal information than the TD group, and they exhibited significantly less brain activity in the right inferior frontal gyrus, bilateral anterior insula, anterior cingulate cortex/ventral medial prefrontal cortex (ACC/vmPFC), and dorsal medial prefrontal cortex (dmPFC) than the TD group. Among these five regions, the ACC/vmPFC and dmPFC were most involved in nonverbal-information-biased judgments in the TD group. Furthermore, the degree of decrease of the brain activity in these two brain regions predicted the severity of autistic communication deficits. The findings indicate that diminished activity in the ACC/vmPFC and dmPFC underlies the impaired abilities of individuals with ASD to use nonverbal content when making judgments regarding other people based on incongruent social information

    Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopaty

    Get PDF
    The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer’s disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer’s disease
    corecore