269 research outputs found
Use of an Anaerobic Chamber Environment for the Assay of Endogenous Cellular Protein-Tyrosine Phosphatase Activities
Protein-tyrosine phosphatases (PTPases) have a catalytic cysteine residue whose reduced state is integral to the reaction mechanism. Since exposure to air can artifactually oxidize this highly reactive thiol, PTPase assays have typically used potent reducing agents to reactivate the enzymes present; however, this approach does not allow for the measurement of the endogenous PTPase activity directly isolated from the in vivo cellular environment. Here we provide a method for using an anaerobic chamber to preserve the activity of the total PTPase complement in a tissue lysate or of an immunoprecipitated PTPase homolog to characterize their endogenous activation state. Comparison with a sample treated with biochemical reducing agents allows the determination of the activatable (reducible) fraction of the endogenous PTPase pool
Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells
The formation of the mitotic spindle is an essential prerequisite for successful mitosis. The dramatic changes in the level of microtubule (Mt) nucleation at the centrosomes and Mt dynamics that occur in prophase are presumed to be initiated through the activity of cdc2/cyclin B, Here we present data that the cdc25B isoform functions to activate the cytoplasmic pool of cdc2/cyclin B responsible for these events. In contrast to cdc25C, cdc25B is present at low levels in HeLa cells during interphase, but sharply increases in prophase, when cdc25B accumulation in the cytoplasm correlates with prophase spindle formation. Overexpression of wild type and dominant negative mutants of cdc25B and cdc25C shows that prophase Mt nucleation is a consequence of cytoplasmic cdc25B activity, and that cdc25C regulates nuclear G(2)/M events, Our data also suggest that the functional status of the centrosome can regulate nuclear mitotic events
The Antioxidant Protein Peroxiredoxin 4 Is Epigenetically Down Regulated in Acute Promyelocytic Leukemia
The antioxidant peroxiredoxin (PRDX) protein family comprises 6 members, which are implicated in a variety of cellular responses, including growth factor signal transduction. PRDX4 resides in the endoplasmic reticulum (ER), where it locally controls oxidative stress by reducing H2O2levels. We recently provided evidence for a regulatory function of PRDX4 in signal transduction from a myeloid growth factor receptor, the granulocyte colony-stimulating factor receptor (G-CSFR). Upon activation, the ligand-induced G-CSFR undergoes endocytosis and routes via the early endosomes where it physically interacts with ER-resident PRDX4. PRDX4 negatively regulates G-CSFR mediated signaling. Here, we investigated whether PRDX4 is affected in acute myeloid leukemia (AML); genomic alterations and expression levels of PRDX4 were investigated. We show that genomic abnormalities involving PRDX4 are rare in AML. However, we find a strong reduction in PRDX4 expression levels in acute promyelocytic leukemia (APL) compared to normal promyelocytes and different molecular subtypes of AML. Subsequently, the possible role of DNA methylation and histone modifications in silencing of PRDX4 in APLs was investigated. We show that the reduced expression is not due to methylation of the CpG island in the promoter region of PRDX4 but correlates with increased trimethylation of histone 3 lysine residue 27 (H3K27me3) and lysine residue 4 (H3K4me3) at the transcriptional start site (TSS) of PRDX4, indicative of a bivalent histone code involved in transcriptional silencing. These findings suggest that the control of G-CSF responses by the antioxidant protein PRDX4 may be perturbed in APL
Liprin-α4 Is Required for Nickel Induced Receptor Protein Tyrosine Phosphatase-Leukocyte Antigen Related Receptor F (RPTP-LAR) Activity
Liprin-α4 was strongly induced following nickel (II) chloride exposure in a variety of cell types including BEAS-2B, A549, BEP2D and BL41 cells. Liprin-α4, a member of the Liprin alpha family, has seven isoforms but only three of these variants were detected in BEAS-2B cells (004, 201 and 202). The level of Liprin-α4 variants 201 and 004 were highly increased in BEAS-2B cells in response to nickel. We showed that Liprin-α4 bound directly to the cytoplasmic region of RPTP-LAR (receptor protein tyrosine phosphatase-leukocyte antigen-related receptor F). The cytoplasmic region of RPTP-LAR contains two phosphatase domains but only the first domain shows activity. The second domain interacts with other proteins. The phosphatase activity was increased both following nickel treatment and also in the presence of nickel ions in cell extracts. Liprin-α4 knock-down lines with decreased expression of Liprin-α4 variants 004 and 201 exhibited greater nickel toxicity compared to controls. The RPTP-LAR phosphatase activity was only slightly increased in a Liprin-α4 knock-down line. Liprin-α4 appeared necessary for the nickel induced tyrosine phosphatase activity. The presence of Liprin-α4 and nickel increased tyrosine phosphatase activity that reduced the global levels of tyrosine phosphorylation in the cell
The FERM and PDZ Domain-Containing Protein Tyrosine Phosphatases, PTPN4 and PTPN3, Are Both Dispensable for T Cell Receptor Signal Transduction
PTPN3 and PTPN4 are two closely-related non-receptor protein tyrosine phosphatases (PTP) that, in addition to a PTP domain, contain FERM (Band 4.1, Ezrin, Radixin, and Moesin) and PDZ (PSD-95, Dlg, ZO-1) domains. Both PTP have been implicated as negative-regulators of early signal transduction through the T cell antigen receptor (TCR), acting to dephosphorylate the TCRζ chain, a component of the TCR complex. Previously, we reported upon the production and characterization of PTPN3-deficient mice which show normal TCR signal transduction and T cell function. To address if the lack of a T cell phenotype in PTPN3-deficient mice can be explained by functional redundancy of PTPN3 with PTPN4, we generated PTPN4-deficient and PTPN4/PTPN3 double-deficient mice. As in PTPN3 mutants, T cell development and homeostasis and TCR-induced cytokine synthesis and proliferation were found to be normal in PTPN4-deficient and PTPN4/PTPN3 double-deficient mice. PTPN13 is another FERM and PDZ domain-containing non-receptor PTP that is distantly-related to PTPN3 and PTPN4 and which has been shown to function as a negative-regulator of T helper-1 (Th1) and Th2 differentiation. Therefore, to determine if PTPN13 might compensate for the loss of PTPN3 and PTPN4 in T cells, we generated mice that lack functional forms of all three PTP. T cells from triple-mutant mice developed normally and showed normal cytokine secretion and proliferative responses to TCR stimulation. Furthermore, T cell differentiation along the Th1, Th2 and Th17 lineages was largely unaffected in triple-mutants. We conclude that PTPN3 and PTPN4 are dispensable for TCR signal transduction
Defining the molecular basis of interaction between R3 receptor-type protein tyrosine phosphatases and VE-cadherin
Receptor-type protein tyrosine phosphatases (RPTPs) of the R3 subgroup play key roles in the immune, vascular and nervous systems. They are characterised by a large ectodomain comprising multiple FNIII-like repeats, a transmembrane domain, and a single intracellular phosphatase domain. The functional role of the extracellular region has not been clearly defined and potential roles in ligand interaction, di-merization, and regulation of cell-cell contacts have been reported. Here bimolecular fluorescence complementation (BiFC) in live cells was used to examine the molecular basis for the interaction of VE-PTP with VE-cadherin, two proteins involved in endothelial cell contact and maintenance of vascu-lar integrity. The potential of other R3-PTPs to interact with VE-cadherin was also explored using this method. Quantitative BiFC analysis, using a VE-PTP construct expressing only the ectodomain and transmembrane domain, revealed a specific interaction with VE-cadherin, when compared with con-trols. Controls were sialophorin, an unrelated membrane protein with a large ectodomain, and a mem-brane anchored C-terminal Venus-YFP fragment, lacking both ectodomain and transmembrane do-mains. Truncation of the first 16 FNIII-like repeats from the ectodomain of VE-PTP indicated that re-moval of this region is not sufficient to disrupt the interaction with VE-cadherin, although it occurs predominantly in an intracellular location. A construct with a deletion of only the 17th domain of VE-PTP was, in contrast to previous studies, still able to interact with VE-cadherin, although this also was predominantly intracellular. Other members of the R3-PTP family (DEP-1, GLEPP1 and SAP-1) also exhibited the potential to interact with VE-cadherin. The direct interaction of DEP-1 with VE-cadherin is likely to be of physiological relevance since both proteins are expressed in endothelial cells. Together the data presented in the study suggest a role for both the ectodomain and transmembrane domain of R3-PTPs in interaction with VE-cadherin
Regulation of Brown Fat Adipogenesis by Protein Tyrosine Phosphatase 1B
Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation.To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO) mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A) and sumoylation-resistant (K/R) PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR) and insulin receptor substrate 1 (IRS1) tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells.These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B
Structural Stability of Human Protein Tyrosine Phosphatase ρ Catalytic Domain: Effect of Point Mutations
Protein tyrosine phosphatase ρ (PTPρ) belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ∼4.0 M urea
HD-PTP Is a Catalytically Inactive Tyrosine Phosphatase Due to a Conserved Divergence in Its Phosphatase Domain
The HD-PTP protein has been described as a tumor suppressor candidate and based on its amino acid sequence, categorized as a classical non-transmembrane protein tyrosine phosphatase (PTP). To date, no HD-PTP phosphorylated substrate has been identified and controversial results concerning its catalytic activity have been recently reported
Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma
<p>Abstract</p> <p>Background</p> <p>Epigenetic mechanisms such as DNA methylation and histone modifications are important regulators of gene expression and are frequently involved in silencing tumor suppressor genes.</p> <p>Methods</p> <p>In order to identify genes that are epigenetically regulated in neuroblastoma tumors, we treated four neuroblastoma cell lines with the demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) either separately or in conjunction with the histone deacetylase inhibitor trichostatin A (TSA). Expression was analyzed using whole-genome expression arrays to identify genes activated by the treatment. These data were then combined with data from genome-wide DNA methylation arrays to identify candidate genes silenced in neuroblastoma due to DNA methylation.</p> <p>Results</p> <p>We present eight genes (<it>KRT19</it>, <it>PRKCDBP</it>, <it>SCNN1A</it>, <it>POU2F2</it>, <it>TGFBI</it>, <it>COL1A2</it>, <it>DHRS3 </it>and <it>DUSP23</it>) that are methylated in neuroblastoma, most of them not previously reported as such, some of which also distinguish between biological subsets of neuroblastoma tumors. Differential methylation was observed for the genes <it>SCNN1A </it>(p < 0.001), <it>PRKCDBP </it>(p < 0.001) and <it>KRT19 </it>(p < 0.01). Among these, the mRNA expression of <it>KRT19 </it>and <it>PRKCDBP </it>was significantly lower in patients that have died from the disease compared with patients with no evidence of disease (fold change -8.3, p = 0.01 for <it>KRT19 </it>and fold change -2.4, p = 0.04 for <it>PRKCDBP</it>).</p> <p>Conclusions</p> <p>In our study, a low methylation frequency of <it>SCNN1A</it>, <it>PRKCDBP </it>and <it>KRT19 </it>is significantly associated with favorable outcome in neuroblastoma. It is likely that analysis of specific DNA methylation will be one of several methods in future patient therapy stratification protocols for treatment of childhood neuroblastomas.</p
- …