11 research outputs found
Moderate energy restriction with high protein diet results in healthier outcome in women
BACKGROUND:
The present study compares two different weight reduction regimens both with a moderately high protein intake on body composition, serum hormone concentration and strength performance in non-competitive female athletes.
METHODS:
Fifteen normal weighted women involved in recreational resistance training and aerobic training were recruited for the study (age 28.5 ± 6.3 yr, height 167.0 ± 7.0 cm, body mass 66.3 ± 4.2 kg, body mass index 23.8 ± 1.8, mean ± SD). They were randomized into two groups. The 1 KG group (n = 8; energy deficit 1100 kcal/day) was supervised to reduce body weight by 1 kg per week and the 0.5 KG group (n = 7; energy deficit 550 kcal/day) by 0.5 kg per week, respectively. In both groups protein intake was kept at least 1.4 g/kg body weight/day and the weight reduction lasted four weeks. At the beginning of the study the energy need was calculated using food and training diaries. The same measurements were done before and after the 4-week weight reduction period including total body composition (DXA), serum hormone concentrations, jumping ability and strength measurements
RESULTS:
During the 4-week weight reduction period there were no changes in lean body mass and bone mass, but total body mass, fat mass and fat percentage decreased significantly in both groups. The changes were greater in the 1 KG group than in the 0.5 KG group in total body mass (p < 0.001), fat mass (p < 0.001) and fat percentage (p < 0.01). Serum testosterone concentration decreased significantly from 1.8 ± 1.0 to 1.4 ± 0.9 nmol/l (p < 0.01) in 1 KG and the change was greater in 1 KG (30%, p < 0.001) than in 0.5 KG (3%). On the other hand, SHBG increased significantly in 1 KG from 63.4 ± 17.7 to 82.4 ± 33.0 nmol/l (p < 0.05) during the weight reducing regimen. After the 4-week period there were no changes in strength performance in 0.5 KG group, however in 1 KG maximal strength in bench press decreased (p < 0.05) while endurance strength in squat and counter movement jump improved (p < 0.05)
CONCLUSION:
It is concluded that a weight reduction by 0.5 kg per week with ~1.4 g protein/kg body weight/day can be recommended to normal weighted, physically active women instead of a larger (e.g. 1 kg per week) weight reduction because the latter may lead to a catabolic state. Vertical jumping performance is improved when fat mass and body weight decrease. Thus a moderate weight reduction prior to a major event could be considered beneficial for normal built athletes in jumping events.peerReviewe
Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact
Muscle wasting in chronic kidney disease (CKD) and other catabolic diseases (e.g. sepsis, diabetes, cancer) can occur despite adequate nutritional intake. It is now known that complications of these various disorders, including acidosis, insulin resistance, inflammation, and increased glucocorticoid and angiotensin II production, all activate the ubiquitin–proteasome system (UPS) to degrade muscle proteins. The initial step in this process is activation of caspase-3 to cleave the myofibril into its components (actin, myosin, troponin, and tropomyosin). Caspase-3 is required because the UPS minimally degrades the myofibril but rapidly degrades its component proteins. Caspase-3 activity is easily detected because it leaves a characteristic 14kD actin fragment in muscle samples. Preliminary evidence from several experimental models of catabolic diseases, as well as from studies in patients, indicates that this fragment could be a useful biomarker because it correlates well with the degree of muscle degradation in dialysis patients and in other catabolic conditions
Citrate- vs. acetate-based dialysate in bicarbonate haemodialysis: consequences on haemodynamics, coagulation, acid-base status, and electrolytes.
BACKGROUND: A concentrate for bicarbonate haemodialysis acidified with citrate instead of acetate has been marketed in recent years. The small amount of citrate used (one-fifth of the concentration adopted in regional anticoagulation) protects against intradialyser clotting while minimally affecting the calcium concentration. The aim of this study was to compare the impact of citrate- and acetate-based dialysates on systemic haemodynamics, coagulation, acid-base status, calcium balance and dialysis efficiency.
METHODS: In 25 patients who underwent a total of 375 dialysis sessions, an acetate dialysate (A) was compared with a citrate dialysate with (C+) or without (C) calcium supplementation (0.25 mmol/L) in a randomised single-blind cross-over study. Systemic haemodynamics were evaluated using pulse-wave analysis. Coagulation, acid-base status, calcium balance and dialysis efficiency were assessed using standard biochemical markers.
RESULTS: Patients receiving the citrate dialysate had significantly lower systolic blood pressure (BP) (-4.3 mmHg, p < 0.01) and peripheral resistances (PR) (-51 dyne.sec.cm-5, p < 0.001) while stroke volume was not increased. In hypertensive patients there was a substantial reduction in BP (-7.8 mmHg, p < 0.01). With the C+ dialysate the BP gap was less pronounced but the reduction in PR was even greater (-226 dyne.sec.cm-5, p < 0.001). Analyses of the fluctuations in PR and of subjective tolerance suggested improved haemodynamic stability with the citrate dialysate. Furthermore, an increase in pre-dialysis bicarbonate and a decrease in pre-dialysis BUN, post-dialysis phosphate and ionised calcium were noted. Systemic coagulation activation was not influenced by citrate.
CONCLUSION: The positive impact on dialysis efficiency, acid-base status and haemodynamics, as well as the subjective tolerance, together indicate that citrate dialysate can significantly contribute to improving haemodialysis in selected patients