27 research outputs found

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Can we avoid high levels of dose escalation for high-risk prostate cancer in the setting of androgen deprivation?

    No full text
    Thomas P Shakespeare,1,2 Shea W Wilcox,1 Noel J Aherne1,2 1Department of Radiation Oncology, North Coast Cancer Institute, 2Rural Clinical School, Faculty of Medicine, University of New South Wales, Coffs Harbour, NSW, Australia Aim: Both dose-escalated external beam radiotherapy (DE-EBRT) and androgen deprivation therapy (ADT) improve outcomes in patients with high-risk prostate cancer. However, there is little evidence specifically evaluating DE-EBRT for patients with high-risk prostate cancer receiving ADT, particularly for EBRT doses >74 Gy. We aimed to determine whether DE-EBRT >74 Gy improves outcomes for patients with high-risk prostate cancer receiving long-term ADT. Patients and methods: Patients with high-risk prostate cancer were treated on an institutional protocol prescribing 3–6 months neoadjuvant ADT and DE-EBRT, followed by 2 years of adjuvant ADT. Between 2006 and 2012, EBRT doses were escalated from 74 Gy to 76 Gy and then to 78 Gy. We interrogated our electronic medical record to identify these patients and analyzed our results by comparing dose levels. Results: In all, 479 patients were treated with a 68-month median follow-up. The 5-year biochemical disease-free survivals for the 74 Gy, 76 Gy, and 78 Gy groups were 87.8%, 86.9%, and 91.6%, respectively. The metastasis-free survivals were 95.5%, 94.5%, and 93.9%, respectively, and the prostate cancer-specific survivals were 100%, 94.4%, and 98.1%, respectively. Dose escalation had no impact on any outcome in either univariate or multivariate analysis. Conclusion: There was no benefit of DE-EBRT >74 Gy in our cohort of high-risk prostate patients treated with long-term ADT. As dose escalation has higher risks of radiotherapy-induced toxicity, it may be feasible to omit dose escalation beyond 74 Gy in this group of patients. Randomized studies evaluating dose escalation for high-risk patients receiving ADT should be considered. Keywords: radiotherapy, IMRT, dose, dose escalation, dose de-escalation, androgen deprivation therapy, prostate cance

    Can we avoid dose escalation for intermediate-risk prostate cancer in the setting of short-course neoadjuvant androgen deprivation?

    No full text
    Thomas P Shakespeare,1,2 Shea W Wilcox,1 Noel J Aherne1,2 1Department of Radiation Oncology, North Coast Cancer Institute, 2Faculty of Medicine, Rural Clinical School, The University of New South Wales, Coffs Harbour, New South Wales, Australia Background: Both dose-escalated external beam radiotherapy (DE-EBRT) and androgen deprivation therapy (ADT) improve the outcomes in patients with intermediate-risk prostate cancer. Despite this, there are only few reports evaluating DE-EBRT for patients with intermediate-risk prostate cancer receiving neoadjuvant ADT, and virtually no studies investigating dose escalation >74 Gy in this setting. We aimed to determine whether DE-EBRT >74 Gy improved the outcomes for patients with intermediate-risk prostate cancer who received neoadjuvant ADT. Findings: In our institution, patients with intermediate-risk prostate cancer were treated with neoadjuvant ADT and DE-EBRT, with doses sequentially increasing from 74 Gy to 76 Gy and then to 78 Gy between 2006 and 2012. We identified 435 patients treated with DE-EBRT and ADT, with a median follow-up of 70 months. For the 74 Gy, 76 Gy, and 78 Gy groups, five-year biochemical disease-free survival rates were 95.0%, 97.8%, and 95.3%, respectively; metastasis-free survival rates were 99.1%, 100.0%, and 98.6%, respectively; and prostate cancer-specific survival rate was 100% for all three dose levels. There was no significant benefit for dose escalation either on univariate or multivariate analysis for any outcome. Conclusion: There was no benefit for DE-EBRT >74 Gy in our cohort of intermediate-risk prostate cancer patients treated with neoadjuvant ADT. Given the higher risks of toxicity associated with dose escalation, it may be feasible to omit dose escalation in this group of patients. Randomized studies evaluating dose de-escalation should be considered. Keywords: radiotherapy, IMRT, dose, dose escalation, dose de-escalation, androgen deprivation therapy, prostate cance

    Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer

    No full text
    Shea W Wilcox,1,4 Noel J Aherne,2,4 Linus C Benjamin,1 Bosco Wu,1 Thomaz de Campos Silva,3 Craig S McLachlan,4 Michael J McKay,3,5 Andrew J Last,1 Thomas P Shakespeare1–4 1North Coast Cancer Institute, Port Macquarie, NSW, Australia; 2North Coast Cancer Institute, Coffs Harbour, NSW, Australia; 3North Coast Cancer Institute, Lismore, NSW, Australia; 4The University of New South Wales, Rural Clinical School, Sydney, NSW, Australia; 5The University of Sydney, Sydney, NSW, Australia Purpose: Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Methods and materials: Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Results: Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. Conclusion: There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses and compares favorably with published series for the treatment of prostate cancer. Keywords: dose-escalation, image-guided radiotherapy, treatment related toxicity, biochemical disease-free survival&nbsp

    Androgen Receptor Status in Triple Negative Breast Cancer: Does It Correlate with Clinicopathological Characteristics?

    No full text
    Alex L Dubrava,1,2 Pan Su Pyae Kyaw,1,2 Joseph Newman,1,2 Jarrad Pringle,1,2 Justin Westhuyzen,3 Gina La Hera Fuentes,2 Thomas P Shakespeare,1,2 Renukadas Sakalkale,2,4 Noel J Aherne1– 3 1Department of Radiation Oncology, Mid North Coast Cancer Centre, Coffs Harbour, New South Wales, Australia; 2Coffs Harbour Rural Clinical School, University of New South Wales, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia; 3School of Health and Human Sciences, Southern Cross University, Coffs Harbour, New South Wales, Australia; 4Coffs Harbour Base Hospital Pathology, Coffs Harbour, New South Wales, AustraliaCorrespondence: Noel J Aherne, Department of Radiation Oncology, Mid North Coast Cancer Centre, Coffs Harbour Hospital, Coffs Harbour, New South Wales, 2450, Australia, Tel + 61 2 6656 5125, Fax +61 2 6656 5855, Email [email protected]: Triple negative breast cancer (TNBC) is a breast carcinoma subtype that neither expresses estrogen (ER) and progesterone receptors (PR) nor the human epidermal growth factor receptor 2 (HER2). Patients with TNBC have been shown to have poorer outcomes mainly owing to the limited treatment options available. However, some studies have shown TNBC tumors expressing androgen receptors (AR), raising hopes of its prognostic role.Patients and Methods: This retrospective study investigated the expression of AR in TNBC and its relationship with known patient demographics, tumor and survival characteristics. From the records of 205 TNBC patients, 36 had available archived tissue samples eligible for AR staining. For statistical purposes, tumors were classified as either “positive” or “negative” for AR expression. The nuclear expression of AR was scored by measuring the percentage of stained tumor cells and its staining intensity.Results: AR was expressed by 50% of the tissue samples in our TNBC cohort. The relationship between AR status with age at the time of TNBC diagnosis was statistically significant, with all AR positive TNBC patients being greater than 50 years old (vs 72.2% in AR negative TNBC). Also, the relationship between AR status and type of surgery received was statistically significant. There were no statistically significant associations between AR status with other tumor characteristics including “TNM status”, tumor grade or treatments received. There was no statistically significant difference in median survival between AR negative and AR positive TNBC patients (3.5 vs 3.1 years; p = 0.581). The relationship between OS time and AR status (p = 0.581), type of surgery (p = 0.061) and treatments (p = 0.917) were not statistically significant.Conclusion: The androgen receptor may be an important prognostic marker in TNBC, with further research warranted. This research may benefit future studies investigating receptor-targeted therapies in TNBC.Keywords: triple negative, breast cancer, androgen recepto
    corecore