4 research outputs found

    Metabolome Genome-Wide Association Study Identifies 74 Novel Genomic Regions Influencing Plasma Metabolites Levels

    Get PDF
    Metabolites are small products of metabolism that provide a snapshot of the wellbeing of an organism and the mechanisms that control key physiological processes involved in health and disease. Here we report the results of a genome-wide association study of 722 circulating metabolite levels in 8809 subjects of European origin, providing both breadth and depth. These analyses identified 202 unique genomic regions whose variations are associated with the circulating levels of 478 different metabolites. Replication with a subset of 208 metabolites that were available in an independent dataset for a cohort of 1768 European subjects confirmed the robust associations, including 74 novel genomic regions not associated with any metabolites in previous works. This study enhances our knowledge of genetic mechanisms controlling human metabolism. Our findings have major potential for identifying novel targets and developing new therapeutic strategies

    First Genotype-Phenotype Study in TBX4 Syndrome: Gain-of-Function Mutations Causative for Lung Disease.

    Get PDF
    Rationale: Despite the increased recognition of TBX4 (T-BOX transcription factor 4)-associated pulmonary arterial hypertension (PAH), genotype-phenotype associations are lacking and may provide important insights. Objectives: To compile and functionally characterize all TBX4 variants reported to date and undertake a comprehensive genotype-phenotype analysis. Methods: We assembled a multicenter cohort of 137 patients harboring monoallelic TBX4 variants and assessed the pathogenicity of missense variation (n = 42) using a novel luciferase reporter assay containing T-BOX binding motifs. We sought genotype-phenotype correlations and undertook a comparative analysis with patients with PAH with BMPR2 (Bone Morphogenetic Protein Receptor type 2) causal variants (n = 162) or no identified variants in PAH-associated genes (n = 741) genotyped via the National Institute for Health Research BioResource-Rare Diseases. Measurements and Main Results: Functional assessment of TBX4 missense variants led to the novel finding of gain-of-function effects associated with older age at diagnosis of lung disease compared with loss-of-function effects (P = 0.038). Variants located in the T-BOX and nuclear localization domains were associated with earlier presentation (P = 0.005) and increased incidence of interstitial lung disease (P = 0.003). Event-free survival (death or transplantation) was shorter in the T-BOX group (P = 0.022), although age had a significant effect in the hazard model (P = 0.0461). Carriers of TBX4 variants were diagnosed at a younger age (P < 0.001) and had worse baseline lung function (FEV1, FVC) (P = 0.009) than the BMPR2 and no identified causal variant groups. Conclusions: We demonstrated that TBX4 syndrome is not strictly the result of haploinsufficiency but can also be caused by gain of function. The pleiotropic effects of TBX4 in lung disease may be in part explained by the differential effect of pathogenic mutations located in critical protein domains
    corecore