37 research outputs found

    Obesity and craniofacial variables in subjects with obstructive sleep apnea syndrome: comparisons of cephalometric values

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this paper was to determine the most common craniofacial changes in patients suffering Obstructive Sleep Apnea Syndrome (OSAS) with regards to the degree of obesity. Accordingly, cephalometric data reported in the literature was searched and analyzed.</p> <p>Methods</p> <p>After a careful analysis of the literature from 1990 to 2006, 5 papers with similar procedural criteria were selected. Inclusion criteria were: recruitment of Caucasian patients with an apnea-hypopnea index (AHI) >10 as grouped in non-obese (Body Mass Index – [BMI] < 30) <it>vs</it>. obese (BMI ≥ 30).</p> <p>Results</p> <p>A low position of the hyoid bone was present in both groups. In non-obese patients, an increased value of the ANB angle and a reduced dimension of the cranial base (S-N) were found to be the most common finding, whereas major skeletal divergence (ANS-PNS ^Go-Me) was evident among obese patients. No strict association was found between OSAS and length of the soft palate.</p> <p>Conclusion</p> <p>In both non-obese and obese OSAS patients, skeletal changes were often evident; with special emphasis of intermaxillary divergence in obese patients. Unexpectedly, in obese OSAS patients, alterations of oropharyngeal soft tissue were not always present and did not prevail.</p

    Long-term 5-year effects of a reduced-fat diet intervention in individuals with glucose intolerance

    Full text link
    OBJECTIVE: To determine whether reducing dietary fat would reduce body weight and improve long-term glycemia in people with glucose intolerance. RESEARCH DESIGN AND METHODS: A 5-year Follow-up of a 1-year randomized controlled trial of a reduced-fat ad libitum diet versus a usual diet. Participants with glucose intolerance (2-h blood glucose 7.0-11.0 mmol/l) were recruited from a Workforce Diabetes Survey. The group that was randomized to a reduced-fat diet participated in monthly small-group education sessions on reduced-fat eating for 1 year. Body weight and glucose tolerance were measured in 136 participants at baseline 6 months, and 1 year (end of intervention), with follow-up at 2 years (n = l04), 3 years (n = 99), and 5 years (n = 103). RESULTS: Compared with the control group, weight decreased in the reduced-fat-diet group (P &lt; 0.0001); the greatest difference was noted at 1 year (-3.3 kg), diminished at subsequent follow-up (-3.2 kg at 2 years and -1.6 kg at 3 years), and was no longer present by 5 years (1.1 kg). Glucose tolerance also improved in patients on the reduced-fat diet; a lower proportion had type 2 diabetes or impaired glucose tolerance at 1 year (47 vs. 67%, P &lt; 0.05), but in subsequent years, there were no differences between groups. However, the more compliant 50% of the intervention group maintained lower fasting and 2-h glucose at 5 years (P = 0.041 and P = 0.026 respectively) compared with control subjects. CONCLUSIONS: The natural history for people at high risk of developing type 2 diabetes is weight gain and deterioration in glucose tolerance. This process may be ameliorated through adherence to a reduced fat intak
    corecore